English

5 D 2 Y D X 2 = { 1 + ( D Y D X ) 2 } 3 / 2 - Mathematics

Advertisements
Advertisements

Question

\[5\frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Solution

\[5\frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^\frac{3}{2} \]
Squaring both sides, we get
\[ \Rightarrow 25 \left( \frac{d^2 y}{d x^2} \right)^2 = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^3 \]
\[ \Rightarrow 25 \left( \frac{d^2 y}{d x^2} \right)^2 = 1 + 3 \left( \frac{dy}{dx} \right)^2 + 3 \left( \frac{dy}{dx} \right)^4 + \left( \frac{dy}{dx} \right)^6 \]
\[ \Rightarrow 25 \left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right)^6 - 3 \left( \frac{dy}{dx} \right)^4 - 3 \left( \frac{dy}{dx} \right)^2 - 1 = 0\]
In this differential equation, the order of the highest order derivative is 2 and its power is 2. So, it is a differential equation of order 2 and degree 2.
It is a non-linear differential equation, as its degree is 2, which is greater than 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.01 [Page 5]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.01 | Q 17 | Page 5

RELATED QUESTIONS

Write the degree of the differential equation `x^3((d^2y)/(dx^2))^2+x(dy/dx)^4=0`


Determine the order and degree (if defined) of the differential equation:

y' + 5y = 0


Determine the order and degree (if defined) of the differential equation:

( y′′′) + (y″)3 + (y′)4 + y5 = 0


Determine the order and degree (if defined) of the differential equation:

y′′′ + 2y″ + y′ = 0


Determine the order and degree (if defined) of the differential equation:

y″ + (y′)2 + 2y = 0


\[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]

(y'')2 + (y')3 + sin y = 0


Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]


Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]


Write the order of the differential equation of all non-horizontal lines in a plane.


Write the degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)\]


The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is


The order of the differential equation \[2 x^2 \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + y = 0\], is


Determine the order and degree (if defined) of the following differential equation:-

y"' + 2y" + y' = 0


Determine the order and degree (if defined) of the following differential equation:-

y" + (y')2 + 2y = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = cos x + C            y' + sin x = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(1+x^2)`                     `y'=(xy)/(1+x^2)`


Determine the order and degree of the following differential equation:

`(("d"^2"y")/"dx"^2)^2 + cos ("dy"/"dx") = 0`


Determine the order and degree of the following differential equations.

`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`


State whether the following is True or False:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.


Select and write the correct alternative from the given option for the question

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.


Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______


State whether the following statement is True or False: 

Order and degree of differential equation are always positive integers.


The order and degree of the differential equation `(dy/dx)^3 + ((d^3y)/dx^3) + xy = 0` are respectively ______


The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.


Order of the differential equation representing the family of parabolas y2 = 4ax is ______.


Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.


The degree of the differential equation `(("d"^2y)/("d"x^2))^2 + (("d"y)/("d"x))^2 = xsin(("d"y)/("d"x))` is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.


Write the sum of the order and the degree of the following differential equation:

`d/(dx) (dy/dx)` = 5


The order of differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y` = 0 is


Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0


The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.


y2 = (x + c)3 is the general solution of the differential equation ______.


Find the general solution of the following differential equation:

`(dy)/(dx) = e^(x-y) + x^2e^-y`


If `(a + bx)e^(y/x)` = x then prove that `x(d^2y)/(dx^2) = (a/(a + bx))^2`.


Find the order and degree of the differential equation `(1 + 3 dy/dx)^(2/3) = 4((d^3y)/(dx^3))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×