English

Order of the differential equation representing the family of parabolas y2 = 4ax is ______. - Mathematics

Advertisements
Advertisements

Question

Order of the differential equation representing the family of parabolas y2 = 4ax is ______.

Fill in the Blanks

Solution

Order of the differential equation representing the family of parabolas y2 = 4ax is One; a is the only arbitrary constant.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Solved Examples [Page 188]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Solved Examples | Q 22. (i) | Page 188

RELATED QUESTIONS

\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

\[y = px + \sqrt{a^2 p^2 + b^2},\text{ where p} = \frac{dy}{dx}\]

\[\left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x\]

Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]


Write the order of the differential equation whose solution is y = a cos x + b sin x + c e−x.


Write the degree of the differential equation \[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]


The order of the differential equation whose general solution is given by y = c1 cos (2x + c2) − (c3 + c4) ax + c5 + c6 sin (x − c7) is


Determine the order and degree (if defined) of the following differential equation:-

\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]


Determine the order and degree (if defined) of the following differential equation:-

y" + 2y' + sin y = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(1+x^2)`                     `y'=(xy)/(1+x^2)`


Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 =  [ "x" + ((d"y")/(d"x"))^2]^3`.


Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`


Determine the order and degree of the following differential equations.

`dy/dx = 7 (d^2y)/dx^2`


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


Choose the correct alternative.

The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.


Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.


State whether the following is True or False:

The degree of the differential equation `e^((dy)/(dx)) = dy/dx +c` is not defined.


Select and write the correct alternative from the given option for the question

The order and degree of `(("d"y)/("d"x))^3 - ("d"^3y)/("d"x^3) + y"e"^x` = 0 are respectively


Choose the correct alternative:

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


Order and degree of differential equation are always ______ integers


State whether the following statement is True or False:

Order and degree of differential equation `x ("d"^3y)/("d"x^3) + 6(("d"^2y)/("d"x^2))^2 + y` = 0 is (2, 2)


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The order and degree of the differential equation `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` respectively, are ______.


The degree of the differential equation `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 is ______.


Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.


The degree of the differential equation `(("d"^2y)/("d"x^2))^2 + (("d"y)/("d"x))^2 = xsin(("d"y)/("d"x))` is ______.


Write the sum of the order and the degree of the following differential equation:

`d/(dx) (dy/dx)` = 5


The degree of the differential equation `dy/dx - x = (y - x dy/dx)^-4` is ______.


If `(a + bx)e^(y/x)` = x then prove that `x(d^2y)/(dx^2) = (a/(a + bx))^2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×