English

Y = P X + √ a 2 P 2 + B 2 , Where P = D Y D X - Mathematics

Advertisements
Advertisements

Question

\[y = px + \sqrt{a^2 p^2 + b^2},\text{ where p} = \frac{dy}{dx}\]
Sum

Solution

\[y = px + \sqrt{a^2 p^2 + b^2}\]
\[ \Rightarrow y - px = \sqrt{a^2 p^2 + b^2}\]
Squaring both sides, we get
\[ \Rightarrow \left( y - px \right)^2 = a^2 p^2 + b^2 \]
\[ \Rightarrow y^2 - 2pxy + p^2 x^2 = a^2 p^2 + b^2 \]
\[ \Rightarrow \left( x^2 - a^2 \right) p^2 - 2pxy + \left( y^2 - b^2 \right) = 0\]
\[ \Rightarrow \left( x^2 - a^2 \right) \left( \frac{dy}{dx} \right)^2 - 2xy\frac{dy}{dx} + y^2 - b^2 = 0 .............\left[\text{ Substituting p }= \frac{dy}{dx} \right]\]
In this differential equation, the order of the highest order derivative is 1 and its highest power is 2. So, it is a differential equation of order 1 and degree 2.
It is a non-linear differential equation, as its degree is 2, which is greater than 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.01 [Page 5]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.01 | Q 19 | Page 5

RELATED QUESTIONS

Determine the order and degree (if defined) of the differential equation:

`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`


Determine the order and degree (if defined) of the differential equation:

y″ + (y′)2 + 2y = 0


Determine the order and degree (if defined) of the differential equation:

y″ + 2y′ + sin y = 0


The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.


For the differential equation given below, indicate its order and degree (if defined).

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`y = e^x (acos x + b sin x)  :  (d^2y)/(dx^2) - 2 dy/dx + 2y = 0`


\[2\frac{d^2 y}{d x^2} + 3\sqrt{1 - \left( \frac{dy}{dx} \right)^2 - y} = 0\]

\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

(y'')2 + (y')3 + sin y = 0


\[\frac{dy}{dx} + e^y = 0\]

Write the degree of the differential equation \[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]


The order of the differential equation whose general solution is given by y = c1 cos (2x + c2) − (c3 + c4) ax + c5 + c6 sin (x − c7) is


If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then


Determine the order and degree (if defined) of the following differential equation:-

\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(1+x^2)`                     `y'=(xy)/(1+x^2)`


Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`


Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 + 7"x" + 5 = 0`


State whether the following is True or False:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.


Choose the correct alternative:

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


Order of highest derivative occurring in the differential equation is called the ______ of the differential equation


 Order of highest derivative occurring in the differential equation is called the degree of the differential equation


State whether the following statement is True or False:  

The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined


The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______ 


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The degree of the differential equation `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 is ______.


Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.


The degree of the differential equation `(("d"^2y)/("d"x^2))^2 + (("d"y)/("d"x))^2 = xsin(("d"y)/("d"x))` is ______.


The degree of the differential equation `sqrt(1 + (("d"y)/("d"x))^2)` = x is ______.


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


Find the general solution of the following differential equation:

`(dy)/(dx) = e^(x-y) + x^2e^-y`


Determine the order and degree of the following differential equation:

`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x


Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.


The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×