Advertisements
Advertisements
प्रश्न
उत्तर
\[y = px + \sqrt{a^2 p^2 + b^2}\]
\[ \Rightarrow y - px = \sqrt{a^2 p^2 + b^2}\]
Squaring both sides, we get
\[ \Rightarrow \left( y - px \right)^2 = a^2 p^2 + b^2 \]
\[ \Rightarrow y^2 - 2pxy + p^2 x^2 = a^2 p^2 + b^2 \]
\[ \Rightarrow \left( x^2 - a^2 \right) p^2 - 2pxy + \left( y^2 - b^2 \right) = 0\]
\[ \Rightarrow \left( x^2 - a^2 \right) \left( \frac{dy}{dx} \right)^2 - 2xy\frac{dy}{dx} + y^2 - b^2 = 0 .............\left[\text{ Substituting p }= \frac{dy}{dx} \right]\]
In this differential equation, the order of the highest order derivative is 1 and its highest power is 2. So, it is a differential equation of order 1 and degree 2.
It is a non-linear differential equation, as its degree is 2, which is greater than 1.
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
y' + 5y = 0
Determine the order and degree (if defined) of the differential equation:
`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`
Determine the order and degree (if defined) of the differential equation:
`(d^2y)/(dx^2)` = cos 3x + sin 3x
Determine the order and degree (if defined) of the differential equation:
y′ + y = ex
For the differential equation given below, indicate its order and degree (if defined).
`(d^4y)/dx^4 - sin ((d^3y)/(dx^3)) = 0`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`y = e^x (acos x + b sin x) : (d^2y)/(dx^2) - 2 dy/dx + 2y = 0`
Define order of a differential equation.
Define degree of a differential equation.
Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]
Write the order of the differential equation of the family of circles touching X-axis at the origin.
Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x sin x `xy'=y+xsqrt(x^2-y^2)`
Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`
Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`
Determine the order and degree of the following differential equation:
`(("d"^3"y")/"dx"^3)^2 = root(5)(1 + "dy"/"dx")`
Choose the correct alternative.
The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.
Fill in the blank:
The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.
State whether the following is True or False:
The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.
State whether the following is True or False:
The degree of the differential equation `e^((dy)/(dx)) = dy/dx +c` is not defined.
Find the order and degree of the following differential equation:
`x+ dy/dx = 1 + (dy/dx)^2`
The power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any is called ______ of the differential equation
State whether the following statement is True or False:
Order and degree of differential equation `x ("d"^3y)/("d"x^3) + 6(("d"^2y)/("d"x^2))^2 + y` = 0 is (2, 2)
The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______
The order and degree of the differential equation `(dy/dx)^3 + ((d^3y)/dx^3) + xy = 0` are respectively ______
The order and degree of the differential equation `("d"^2"y")/"dx"^2 + (("d"^3"y")/"dx"^3) + x^(1/5) = 0` are respectively.
The order and degree of `(("n + 1")/"n")("d"^4"y")/"dx"^4 = ["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)` are respectively.
If m and n are the order and degree of the differential equation `((d^3y)/(dx^3))^6+5((d^3y)/(dx^3))^4/((d^4y)/(dx^4))+(d^4y)/(dx^4)=x^3-1,` then ______.
The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.
Order of the differential equation representing the family of parabolas y2 = 4ax is ______.
The degree of the differential equation `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 is ______.
The degree of the differential equation `(("d"^2y)/("d"x^2))^2 + (("d"y)/("d"x))^2 = xsin(("d"y)/("d"x))` is ______.
The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.
The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.
Find the order and degree of the differential equation
`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`
Find the order and degree of the differential equation `(1 + 3 dy/dx)^(2/3) = 4((d^3y)/(dx^3))`.