Advertisements
Advertisements
Question
The degree of the differential equation `sqrt(1 + (("d"y)/("d"x))^2)` = x is ______.
Solution
The degree of the differential equation `sqrt(1 + (("d"y)/("d"x))^2)` = x is 2.
Explanation:
The given differential equation is `sqrt(1 + (("d"y)/("d"x))^2)` = x
Squaring both sides, we get
`1 + (("d"y)/("d"x))^2 = x^2`
So, the degree of the equation is 2.
APPEARS IN
RELATED QUESTIONS
Determine the order and degree (if defined) of the differential equation:
( y′′′) + (y″)3 + (y′)4 + y5 = 0
Determine the order and degree (if defined) of the differential equation:
y″ + (y′)2 + 2y = 0
Define degree of a differential equation.
The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is
Determine the order and degree (if defined) of the following differential equation:-
y" + (y')2 + 2y = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x2 + 2x + C y' − 2x − 2 = 0
Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 = [ "x" + ((d"y")/(d"x"))^2]^3`.
Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`
Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`
Determine the order and degree of the following differential equation:
`("d"^4"y")/"dx"^4 + sin ("dy"/"dx") = 0`
Order and degree of a differential equation are always positive integers.
State whether the following is True or False:
The order of highest derivative occurring in the differential equation is called degree of the differential equation.
Order of highest derivative occurring in the differential equation is called the degree of the differential equation
State whether the following statement is True or False:
The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined
The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.
The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______
The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.
If m and n are the order and degree of the differential equation `((d^3y)/(dx^3))^6+5((d^3y)/(dx^3))^4/((d^4y)/(dx^4))+(d^4y)/(dx^4)=x^3-1,` then ______.
The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.
The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.
The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
State the order of the above given differential equation.
Determine the order and degree of the following differential equation:
`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x
The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.
Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.