English

Determine the Order and Degree (If Defined) of the Following Differential Equation:- Y" + (Y')2 + 2y = 0 - Mathematics

Advertisements
Advertisements

Question

Determine the order and degree (if defined) of the following differential equation:-

y" + (y')2 + 2y = 0

Short Note
Sum

Solution

y" + (y')2 + 2y = 0

The highest order derivative in the given equation is y'' and its power is 1.

Therefore, the given differential equation is of second order and first degree.

i.e., Order = 2 and degree = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 144]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 1.5 | Page 144

RELATED QUESTIONS

Write the degree of the differential equation `x^3((d^2y)/(dx^2))^2+x(dy/dx)^4=0`


The order of the differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y = 0` is ______.


\[\frac{d^3 y}{d x^3} + \left( \frac{d^2 y}{d x^2} \right)^3 + \frac{dy}{dx} + 4y = \sin x\]

\[\sqrt{1 - y^2} dx + \sqrt{1 - x^2} dx = 0\]

\[\frac{d^2 y}{d x^2} = \left( \frac{dy}{dx} \right)^{2/3}\]

\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

\[\left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x\]

\[e^\frac{dy}{dx} = x + 1 ; y\left( 0 \right) = 3\]

Write the degree of the differential equation
\[\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right)\]


Write the degree of the differential equation \[\left( \frac{dy}{dx} \right)^4 + 3x\frac{d^2 y}{d x^2} = 0\]


Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]


Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]


Determine the order and degree (if defined) of the following differential equation:-

y"' + 2y" + y' = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = cos x + C            y' + sin x = 0


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x


Determine the order and degree of the following differential equation:

(y''')2 + 3y'' + 3xy' + 5y = 0


Determine the order and degree of the following differential equation:

`(("d"^2"y")/"dx"^2)^2 + cos ("dy"/"dx") = 0`


Determine the order and degree of the following differential equation:

`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`


Determine the order and degree of the following differential equation:

`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`


Choose the correct option from the given alternatives:

The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^2 = root(5)(1 + "dy"/"dx")`


Determine the order and degree of the following differential equations.

`((d^2y)/(dx^2))^2 + ((dy)/(dx))^2 =a^x `


Fill in the blank:

The order of highest derivative occurring in the differential equation is called ___________ of the differential equation.


Fill in the blank:

Order and degree of a differential equation are always __________ integers.


State whether the following is True or False:

The degree of the differential equation `e^((dy)/(dx)) = dy/dx +c` is not defined.


Choose the correct alternative:

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


Order of highest derivative occurring in the differential equation is called the ______ of the differential equation


State whether the following statement is True or False:  

The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined


The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.


The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.


Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.


The degree of the differential equation `(("d"^2y)/("d"x^2))^2 + (("d"y)/("d"x))^2 = xsin(("d"y)/("d"x))` is ______.


The order and degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^(1/4) + x^(1/5)` = 0, respectively, are ______.


y2 = (x + c)3 is the general solution of the differential equation ______.


Determine the order and degree of the following differential equation:

`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x


The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.


The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.


Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3

Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×