Advertisements
Advertisements
प्रश्न
Determine the order and degree (if defined) of the following differential equation:-
y" + (y')2 + 2y = 0
उत्तर
y" + (y')2 + 2y = 0
The highest order derivative in the given equation is y'' and its power is 1.
Therefore, the given differential equation is of second order and first degree.
i.e., Order = 2 and degree = 1
APPEARS IN
संबंधित प्रश्न
Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively
(A) 2, 3
(B) 3, 2
(C) 7, 2
(D) 3, 7
Determine the order and degree (if defined) of the differential equation:
( y′′′) + (y″)3 + (y′)4 + y5 = 0
The order of the differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y = 0` is ______.
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`x^2 = 2y^2 log y : (x^2 + y^2) dy/dx - xy = 0`
Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]
Write the degree of the differential equation x \[\left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + x^3 = 0\]
Write the degree of the differential equation \[x^3 \left( \frac{d^2 y}{d x^2} \right)^2 + x \left( \frac{dy}{dx} \right)^4 = 0\]
The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^3 + \left( \frac{dy}{dx} \right)^2 + \sin\left( \frac{dy}{dx} \right) + 1 = 0\], is
Determine the order and degree (if defined) of the following differential equation:-
(y"')2 + (y")3 + (y')4 + y5 = 0
Determine the order and degree (if defined) of the following differential equation:-
y"' + y2 + ey' = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(1+x^2)` `y'=(xy)/(1+x^2)`
Determine the order and degree of the following differential equation:
`(dy)/(dx) = (2sin x + 3)/(dy/dx)`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + "dy"/"dx" + "x" = sqrt(1 + ("d"^3"y")/"dx"^3)`
Determine the order and degree of the following differential equation:
`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`
Determine the order and degree of the following differential equations.
`(y''')^2 + 2(y'')^2 + 6y' + 7y = 0`
Fill in the blank:
Order and degree of a differential equation are always __________ integers.
Find the order and degree of the following differential equation:
`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`
Degree of the given differential equation
`(("d"^3"y")/"dx"^2)^2 = (1 + "dy"/"dx")^(1/3)` is
The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.
The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______
The third order differential equation is ______
The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.
The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.
The order and degree of `(("n + 1")/"n")("d"^4"y")/"dx"^4 = ["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)` are respectively.
The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.
The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.
Order of the differential equation representing the family of parabolas y2 = 4ax is ______.
Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.
Write the sum of the order and the degree of the following differential equation:
`d/(dx) (dy/dx)` = 5
y2 = (x + c)3 is the general solution of the differential equation ______.
If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.
The order of the differential equation of all parabolas, whose latus rectum is 4a and axis parallel to the x-axis, is ______.
The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.
Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`