Advertisements
Advertisements
प्रश्न
Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively
(A) 2, 3
(B) 3, 2
(C) 7, 2
(D) 3, 7
The order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively
(A) 2, 3
(B) 3, 2
(C) 2, 2
(D) 3, 3
उत्तर
`[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)`
Cubing on both sides, we get
`[1+(dy/dx)^3]^(7)=7((d^2y)/(dx^2))^3`
By definition of degree and order Degree: 3 ; Order: 2
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
`((ds)/(dt))^4 + 3s (d^2s)/(dt^2) = 0`
Determine the order and degree (if defined) of the differential equation:
( y′′′) + (y″)3 + (y′)4 + y5 = 0
Determine the order and degree (if defined) of the differential equation:
y′′′ + 2y″ + y′ = 0
Determine the order and degree (if defined) of the differential equation:
y″ + 2y′ + sin y = 0
The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.
For the differential equation given below, indicate its order and degree (if defined).
`((dy)/(dx))^3 -4(dy/dx)^2 + 7y = sin x`
For the differential equation given below, indicate its order and degree (if defined).
`(d^4y)/dx^4 - sin ((d^3y)/(dx^3)) = 0`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`x^2 = 2y^2 log y : (x^2 + y^2) dy/dx - xy = 0`
(y'')2 + (y')3 + sin y = 0
Define degree of a differential equation.
Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]
What is the degree of the following differential equation?
Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]
Write the degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)\]
The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]
The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is
If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then
The order of the differential equation \[2 x^2 \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + y = 0\], is
Determine the order and degree (if defined) of the following differential equation:-
y"' + 2y" + y' = 0
Determine the order and degree (if defined) of the following differential equation:-
(y"')2 + (y")3 + (y')4 + y5 = 0
Determine the order and degree (if defined) of the following differential equation:-
y" + (y')2 + 2y = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = cos x + C y' + sin x = 0
Determine the order and degree of the following differential equation:
`root(3)(1 +("dy"/"dx")^2) = ("d"^2"y")/"dx"^2`
Determine the order and degree of the following differential equation:
`(("d"^2"y")/"dx"^2)^2 + cos ("dy"/"dx") = 0`
Determine the order and degree of the following differential equation:
`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`
Determine the order and degree of the following differential equation:
`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`
Determine the order and degree of the following differential equation:
`("d"^4"y")/"dx"^4 + sin ("dy"/"dx") = 0`
Determine the order and degree of the following differential equations.
`(d^2x)/(dt^2)+((dx)/(dt))^2 + 8=0`
Determine the order and degree of the following differential equations.
`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`
Determine the order and degree of the following differential equations.
`sqrt(1+1/(dy/dx)^2) = (dy/dx)^(3/2)`
Determine the order and degree of the following differential equations.
`dy/dx = 7 (d^2y)/dx^2`
Fill in the blank:
Order and degree of a differential equation are always __________ integers.
Order and degree of a differential equation are always positive integers.
State the degree of differential equation `"e"^((dy)/(dx)) + (dy)/(dx)` = x
Choose the correct alternative:
The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively
Order and degree of differential equation are always ______ integers
State whether the following statement is True or False:
Order and degree of differential equation are always positive integers.
State whether the following statement is True or False:
The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined
State whether the following statement is True or False:
Order and degree of differential equation `x ("d"^3y)/("d"x^3) + 6(("d"^2y)/("d"x^2))^2 + y` = 0 is (2, 2)
The order and degree of the differential equation `[1 + ["dy"/"dx"]^3]^(7/3) = 7 (("d"^2"y")/"dx"^2)` are respectively.
The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.
The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.
The order and degree of the differential equation `("d"^2"y")/"dx"^2 + (("d"^3"y")/"dx"^3) + x^(1/5) = 0` are respectively.
The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.
The order of the differential equation of all circles of given radius a is ______.
The degree of the differential equation `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 is ______.
The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.
The order and degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^(1/4) + x^(1/5)` = 0, respectively, are ______.
The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.
The order and degree of the differential equation `(("d"^3y)/("d"x^3))^2 - 3 ("d"^2y)/("d"x^2) + 2(("d"y)/("d"x))^4` = y4 are ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
State the order of the above given differential equation.
Write the sum of the order and the degree of the following differential equation:
`d/(dx) (dy/dx)` = 5
The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:
Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0
y2 = (x + c)3 is the general solution of the differential equation ______.
Determine the order and degree of the following differential equation:
`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x
The order and degree of the differential equation `sqrt(dy/dx) - 4 dy/dx - 7x` = 0 are ______.
Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.
The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.
The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is ______.
Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3
Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.
Which of the following is correct?