Advertisements
Advertisements
प्रश्न
Determine the order and degree (if defined) of the differential equation:
`((ds)/(dt))^4 + 3s (d^2s)/(dt^2) = 0`
उत्तर
`((ds)/(dt))^4 + 3s (d^2s)/(dt^2) = 0`
The highest order derivative present in the given differential equation is `(d^2s)/(dt)^2`. Therefore,
It is a polynomial equation in `(d^2s)/(dt^2)and (ds)/(dt)`. The power raised to `(d^2s)/(dt^2)` is 1
Hence, its degree is one.
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`
Determine the order and degree (if defined) of the differential equation:
y″ + 2y′ + sin y = 0
Define degree of a differential equation.
Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]
Write the order of the differential equation of all non-horizontal lines in a plane.
Write the order of the differential equation whose solution is y = a cos x + b sin x + c e−x.
What is the degree of the following differential equation?
The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is
Determine the order and degree (if defined) of the following differential equation:-
\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]
Determine the order and degree (if defined) of the following differential equation:-
y"' + 2y" + y' = 0
Determine the order and degree (if defined) of the following differential equation:-
(y"')2 + (y")3 + (y')4 + y5 = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = cos x + C y' + sin x = 0
Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 = [ "x" + ((d"y")/(d"x"))^2]^3`.
Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x
Determine the order and degree of the following differential equation:
`root(3)(1 +("dy"/"dx")^2) = ("d"^2"y")/"dx"^2`
Determine the order and degree of the following differential equation:
`"dy"/"dx" = 3"y" + root(4)(1 + 5 ("dy"/"dx")^2)`
Fill in the blank:
The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.
State whether the following is True or False:
The degree of the differential equation `e^((dy)/(dx)) = dy/dx +c` is not defined.
The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.
Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______
The order and degree of the differential equation `[1 + ["dy"/"dx"]^3]^(7/3) = 7 (("d"^2"y")/"dx"^2)` are respectively.
The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.
The order of the differential equation of all circles of given radius a is ______.
Order of the differential equation representing the family of parabolas y2 = 4ax is ______.
Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.
The order and degree of the differential equation `(("d"^3y)/("d"x^3))^2 - 3 ("d"^2y)/("d"x^2) + 2(("d"y)/("d"x))^4` = y4 are ______.
The degree of the differential equation `sqrt(1 + (("d"y)/("d"x))^2)` = x is ______.
Determine the order and degree of the following differential equation:
`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x
The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.
The degree and order of the differential equation `[1 + (dy/dx)^3]^(7/3) = 7((d^2y)/(dx^2))` respectively are ______.
The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.
The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is ______.