मराठी

D 3 Y D X 3 + ( D 2 Y D X 2 ) 3 + D Y D X + 4 Y = Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{d^3 y}{d x^3} + \left( \frac{d^2 y}{d x^2} \right)^3 + \frac{dy}{dx} + 4y = \sin x\]

उत्तर

\[\frac{d^3 y}{d x^3} + \left( \frac{d^2 y}{d x^2} \right)^3 + \frac{dy}{dx} + 4y = \sin x\]
In this differential equation, the order of the highest order derivative is 3 and its power is 1. So, it is a differential equation of degree 3 and order 1.
It is a non-linear differential equation, as its differential co-efficient \[\frac{d^2 y}{d x^2}\] has exponent 3, which is greater than 1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.01 [पृष्ठ ५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.01 | Q 12 | पृष्ठ ५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Determine the order and degree (if defined) of the differential equation:

`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`


Determine the order and degree (if defined) of the differential equation:

( y′′′) + (y″)3 + (y′)4 + y5 = 0


Determine the order and degree (if defined) of the differential equation:

y′ + y = ex


For the differential equation given below, indicate its order and degree (if defined).

`(d^4y)/dx^4 - sin ((d^3y)/(dx^3)) = 0`


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`


\[\sqrt{1 - y^2} dx + \sqrt{1 - x^2} dx = 0\]

\[2\frac{d^2 y}{d x^2} + 3\sqrt{1 - \left( \frac{dy}{dx} \right)^2 - y} = 0\]

\[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]

\[\frac{d^2 y}{d x^2} + 5x\left( \frac{dy}{dx} \right) - 6y = \log x\]

\[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]

Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]


Write the degree of the differential equation \[x^3 \left( \frac{d^2 y}{d x^2} \right)^2 + x \left( \frac{dy}{dx} \right)^4 = 0\]


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is


The order of the differential equation whose general solution is given by y = c1 cos (2x + c2) − (c3 + c4) ax + c5 + c6 sin (x − c7) is


Determine the order and degree (if defined) of the following differential equation:-

(y"')2 + (y")3 + (y')4 + y5 = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = cos x + C            y' + sin x = 0


Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`


Determine the order and degree of the following differential equation:

`(dy)/(dx) = (2sin x + 3)/(dy/dx)`


Determine the order and degree of the following differential equations.

`(d^2x)/(dt^2)+((dx)/(dt))^2 + 8=0`


Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.


Fill in the blank:

Order and degree of a differential equation are always __________ integers.


State whether the following is True or False:

The degree of the differential equation `e^((dy)/(dx)) = dy/dx +c` is not defined.


Select and write the correct alternative from the given option for the question

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


State the degree of differential equation `"e"^((dy)/(dx)) + (dy)/(dx)` = x


Order of highest derivative occurring in the differential equation is called the ______ of the differential equation


Order and degree of differential equation are always ______ integers


Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The order and degree of `(("n + 1")/"n")("d"^4"y")/"dx"^4 = ["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)` are respectively.


The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.


Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.


The order and degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^(1/4) + x^(1/5)` = 0, respectively, are ______.


The order and degree of the differential equation `[1 + ((dy)/(dx))^2] = (d^2y)/(dx^2)` are ______.


Write the sum of the order and the degree of the following differential equation:

`d/(dx) (dy/dx)` = 5


Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0


Determine the order and degree of the following differential equation:

`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x


The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×