Advertisements
Advertisements
प्रश्न
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = cos x + C y' + sin x = 0
उत्तर
We have,
y' + sin x = 0 .....(1)
Now,
y = cos x + C
⇒ y' = −sin x
Putting the above value in (1), we get
LHS = −sin x + sin x = 0 = RHS
Thus, y = cos x + C is the solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
`(d^4y)/(dx^4) + sin(y^("')) = 0`
Determine the order and degree (if defined) of the differential equation:
y' + 5y = 0
Determine the order and degree (if defined) of the differential equation:
( y′′′) + (y″)3 + (y′)4 + y5 = 0
Determine the order and degree (if defined) of the differential equation:
y′′′ + 2y″ + y′ = 0
Determine the order and degree (if defined) of the differential equation:
y″ + (y′)2 + 2y = 0
For the differential equation given below, indicate its order and degree (if defined).
`((dy)/(dx))^3 -4(dy/dx)^2 + 7y = sin x`
For the differential equation given below, indicate its order and degree (if defined).
`(d^4y)/dx^4 - sin ((d^3y)/(dx^3)) = 0`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`y = e^x (acos x + b sin x) : (d^2y)/(dx^2) - 2 dy/dx + 2y = 0`
Write the degree of the differential equation x \[\left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + x^3 = 0\]
Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]
Write the degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)\]
Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]
Find the sum of the order and degree of the differential equation
\[y = x \left( \frac{dy}{dx} \right)^3 + \frac{d^2 y}{d x^2}\]
The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^3 + \left( \frac{dy}{dx} \right)^2 + \sin\left( \frac{dy}{dx} \right) + 1 = 0\], is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(1+x^2)` `y'=(xy)/(1+x^2)`
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x sin x `xy'=y+xsqrt(x^2-y^2)`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x
Determine the order and degree of the following differential equation:
(y''')2 + 3y'' + 3xy' + 5y = 0
Determine the order and degree of the following differential equations.
`(d^2x)/(dt^2)+((dx)/(dt))^2 + 8=0`
Choose the correct alternative.
The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.
The power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any is called ______ of the differential equation
The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.
The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.
The order and degree of the differential equation `(("d"^3y)/("d"x^3))^2 - 3 ("d"^2y)/("d"x^2) + 2(("d"y)/("d"x))^4` = y4 are ______.
If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.
The degree of the differential equation `dy/dx - x = (y - x dy/dx)^-4` is ______.
The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.
The degree of the differential equation `((d^2y)/dx^2)^2 + (dy/dx)^3` = ax is 3.
Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.
The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.
The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is ______.