हिंदी

In the Following Verify that the Given Functions (Explicit Or Implicit) is a Solution of the Corresponding Differential Equation:- Y = Cos X + C Y' + Sin X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = cos x + C            y' + sin x = 0

योग

उत्तर

We have,
y' + sin x = 0 .....(1)
Now,
y = cos x + C
⇒ y' = −sin x
Putting the above value in (1), we get
LHS = −sin x + sin x = 0 = RHS
Thus, y = cos x + C is the solution of the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 3.3 | पृष्ठ १४४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively 

(A) 2, 3

(B) 3, 2

(C) 7, 2

(D) 3, 7


Determine the order and degree (if defined) of the differential equation:

y' + 5y = 0


Determine the order and degree (if defined) of the differential equation:

`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`


Determine the order and degree (if defined) of the differential equation:

y″ + 2y′ + sin y = 0


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`


\[y = px + \sqrt{a^2 p^2 + b^2},\text{ where p} = \frac{dy}{dx}\]

\[\left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x\]

\[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]

Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]


Write the degree of the differential equation \[x^3 \left( \frac{d^2 y}{d x^2} \right)^2 + x \left( \frac{dy}{dx} \right)^4 = 0\]


The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is


The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is


The order of the differential equation \[2 x^2 \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + y = 0\], is


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 + 7"x" + 5 = 0`


Determine the order and degree of the following differential equation:

`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`


Choose the correct option from the given alternatives:

The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.


Determine the order and degree of the following differential equations.

`(y''')^2 + 2(y'')^2 + 6y' + 7y = 0`


State whether the following is True or False:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.


Find the order and degree of the following differential equation:

`x+ dy/dx = 1 + (dy/dx)^2`


Select and write the correct alternative from the given option for the question

The order and degree of `(("d"y)/("d"x))^3 - ("d"^3y)/("d"x^3) + y"e"^x` = 0 are respectively


State the degree of differential equation `"e"^((dy)/(dx)) + (dy)/(dx)` = x


Degree of the given differential equation

`(("d"^3"y")/"dx"^2)^2 = (1 + "dy"/"dx")^(1/3)` is


The order of the differential equation of all circles whose radius is 4, is ______.


The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______ 


The third order differential equation is ______ 


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.


The order and degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^(1/4) + x^(1/5)` = 0, respectively, are ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.


The order and degree of the differential equation `(("d"^3y)/("d"x^3))^2 - 3 ("d"^2y)/("d"x^2) + 2(("d"y)/("d"x))^4` = y4 are ______.


Write the sum of the order and the degree of the following differential equation:

`d/(dx) (dy/dx)` = 5


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.


The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.


The degree and order of the differential equation `[1 + (dy/dx)^3]^(7/3) = 7((d^2y)/(dx^2))` respectively are ______.


The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.


The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×