Advertisements
Advertisements
प्रश्न
Determine the order and degree (if defined) of the differential equation:
`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`
उत्तर
`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`
The highest order derivative present in the given differential equation is `(d^2y)/(dx^2)`.
Therefore, its order is 2.
The given differential equation is not a polynomial equation in its derivatives. Hence, its degree is not defined.
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
y' + 5y = 0
Determine the order and degree (if defined) of the differential equation:
y″ + 2y′ + sin y = 0
Write the order of the differential equation of the family of circles touching X-axis at the origin.
Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]
The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]
The order of the differential equation whose general solution is given by y = c1 cos (2x + c2) − (c3 + c4) ax + c5 + c6 sin (x − c7) is
If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then
The order of the differential equation \[2 x^2 \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + y = 0\], is
Determine the order and degree (if defined) of the following differential equation:-
y"' + 2y" + y' = 0
Determine the order and degree (if defined) of the following differential equation:-
y"' + 2y" + y' = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(1+x^2)` `y'=(xy)/(1+x^2)`
Determine the order and degree of the following differential equation:
`(dy)/(dx) = (2sin x + 3)/(dy/dx)`
Determine the order and degree of the following differential equation:
(y''')2 + 3y'' + 3xy' + 5y = 0
Determine the order and degree of the following differential equation:
`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`
Determine the order and degree of the following differential equation:
`(("d"^3"y")/"dx"^3)^2 = root(5)(1 + "dy"/"dx")`
Determine the order and degree of the following differential equations.
`(d^2x)/(dt^2)+((dx)/(dt))^2 + 8=0`
Determine the order and degree of the following differential equations.
`((d^3y)/dx^3)^(1/6) = 9`
Choose the correct alternative.
The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.
State whether the following is True or False:
The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.
Find the order and degree of the following differential equation:
`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`
The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.
The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is
The third order differential equation is ______
If m and n are the order and degree of the differential equation `((d^3y)/(dx^3))^6+5((d^3y)/(dx^3))^4/((d^4y)/(dx^4))+(d^4y)/(dx^4)=x^3-1,` then ______.
The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.
The order of the differential equation of all circles of given radius a is ______.
Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.
The degree of the differential equation `("d"^2y)/("d"x^2) + "e"^((dy)/(dx))` = 0 is ______.
The degree of the differential equation `("d"^2"y")/("dx"^2) + 3("dy"/"dx")^2 = "x"^2 (("d"^2"y")/("dx"^2))^2` is:
Write the sum of the order and the degree of the following differential equation:
`d/(dx) (dy/dx)` = 5
The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.
The degree and order of the differential equation `[1 + (dy/dx)^3]^(7/3) = 7((d^2y)/(dx^2))` respectively are ______.
The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.
The degree of the differential equation `((d^2y)/dx^2)^2 + (dy/dx)^3` = ax is 3.
The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.