हिंदी

Find the order and degree of the following differential equation: [d3ydx3+x]32=d2ydx2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the order and degree of the following differential equation:

`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`

योग

उत्तर

`[ d^3y/dx^3 + x]^(3/2) = (d^2y)/dx^2`

Squaring on both sides, we get

`[(d^3y)/dx^3 + x]^3 = ((d^2y)/dx^2)^2`

By definition of order and degree,

Order : 3 ; Degree : 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.01 | पृष्ठ १७२

संबंधित प्रश्न

\[\sqrt{1 - y^2} dx + \sqrt{1 - x^2} dx = 0\]

\[5\frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[y = px + \sqrt{a^2 p^2 + b^2},\text{ where p} = \frac{dy}{dx}\]

The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^3 + \left( \frac{dy}{dx} \right)^2 + \sin\left( \frac{dy}{dx} \right) + 1 = 0\], is


Determine the order and degree (if defined) of the following differential equation:-

y" + 2y' + sin y = 0


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x


Choose the correct option from the given alternatives:

The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


Choose the correct alternative.

The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.


Order and degree of a differential equation are always positive integers.


Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______


The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.


The order of the differential equation of all circles of given radius a is ______.


The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.


The degree of the differential equation `sqrt(1 + (("d"y)/("d"x))^2)` = x is ______.


The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.


The degree of the differential equation `((d^2y)/dx^2)^2 + (dy/dx)^3` = ax is 3.


The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.


Find the order and degree of the differential equation

`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×