हिंदी

The sum of the order and the degree of the differential equation ddx[(dydx)3] is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.

विकल्प

  • 2

  • 3

  • 5

  • 0

MCQ
रिक्त स्थान भरें

उत्तर

The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is 3.

Explanation:

`d/dx[(dy/dx)^3] = 3(dy/dx)^2 (d^2y)/(dx^2)`

Here order = 2 and degree = 1

∴ Sum of the order and the degree = 2 + 1 = 3.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Determine the order and degree (if defined) of the differential equation:

( y′′′) + (y″)3 + (y′)4 + y5 = 0


The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.


\[5\frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[\frac{d^2 y}{d x^2} + 5x\left( \frac{dy}{dx} \right) - 6y = \log x\]

\[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} + \frac{dy}{dx} + y \sin y = 0\]

Write the degree of the differential equation x \[\left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + x^3 = 0\]

 


The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is


Write the sum of the order and degree of the differential equation

\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]


Determine the order and degree (if defined) of the following differential equation:-

(y"')2 + (y")3 + (y')4 + y5 = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x sin x              `xy'=y+xsqrt(x^2-y^2)`


Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 =  [ "x" + ((d"y")/(d"x"))^2]^3`.


Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`


Determine the order and degree of the following differential equation:

(y''')2 + 3y'' + 3xy' + 5y = 0


Determine the order and degree of the following differential equation:

`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


Fill in the blank:

The order of highest derivative occurring in the differential equation is called ___________ of the differential equation.


Order and degree of differential equation are always ______ integers


 Order of highest derivative occurring in the differential equation is called the degree of the differential equation


The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.


The order of the differential equation of all circles whose radius is 4, is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.


The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.


The order and degree of the differential equation `(("d"^3y)/("d"x^3))^2 - 3 ("d"^2y)/("d"x^2) + 2(("d"y)/("d"x))^4` = y4 are ______.


The order and degree of the differential equation `[1 + ((dy)/(dx))^2] = (d^2y)/(dx^2)` are ______.


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.


The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.


Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×