Advertisements
Advertisements
प्रश्न
The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is
विकल्प
1
2
3
4
उत्तर
1
The order of a differential equation depends on the number of arbitrary constants in it.
since \[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] contains only 1 constant, the order of the differential equation is 1.
APPEARS IN
संबंधित प्रश्न
Write the degree of the differential equation `x^3((d^2y)/(dx^2))^2+x(dy/dx)^4=0`
Determine the order and degree (if defined) of the differential equation:
y' + 5y = 0
Determine the order and degree (if defined) of the differential equation:
`((ds)/(dt))^4 + 3s (d^2s)/(dt^2) = 0`
Determine the order and degree (if defined) of the differential equation:
`(d^2y)/(dx^2)` = cos 3x + sin 3x
(xy2 + x) dx + (y − x2y) dy = 0
Write the degree of the differential equation
\[\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right)\]
Write the order of the differential equation of the family of circles touching X-axis at the origin.
What is the degree of the following differential equation?
Write the degree of the differential equation \[x^3 \left( \frac{d^2 y}{d x^2} \right)^2 + x \left( \frac{dy}{dx} \right)^4 = 0\]
The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]
Find the sum of the order and degree of the differential equation
\[y = x \left( \frac{dy}{dx} \right)^3 + \frac{d^2 y}{d x^2}\]
If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then
Write the sum of the order and degree of the differential equation
\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]
Determine the order and degree of the following differential equation:
(y''')2 + 3y'' + 3xy' + 5y = 0
Choose the correct option from the given alternatives:
The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`
Determine the order and degree of the following differential equations.
`((d^2y)/(dx^2))^2 + ((dy)/(dx))^2 =a^x `
State whether the following statement is True or False:
The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any
The order of the differential equation of all circles whose radius is 4, is ______.
The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______
The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.
The order and degree of the differential equation `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` respectively, are ______.
The degree of the differential equation `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 is ______.
The order and degree of the differential equation `[1 + ((dy)/(dx))^2] = (d^2y)/(dx^2)` are ______.
The degree of the differential equation `sqrt(1 + (("d"y)/("d"x))^2)` = x is ______.
Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0
y2 = (x + c)3 is the general solution of the differential equation ______.
Find the general solution of the following differential equation:
`(dy)/(dx) = e^(x-y) + x^2e^-y`
The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.
The order of the differential equation of all parabolas, whose latus rectum is 4a and axis parallel to the x-axis, is ______.
The degree of the differential equation `((d^2y)/dx^2)^2 + (dy/dx)^3` = ax is 3.
Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`