Advertisements
Advertisements
प्रश्न
y2 = (x + c)3 is the general solution of the differential equation ______.
उत्तर
y2 = (x + c)3 is the general solution of the differential equation `bb((dy)/(dx) = 3/2 (root(3)(y)))`.
Explanation:
⇒ y2 = (x + c)3
Differentiating w.r.t. 'x',
`2y * (dy)/(dx) = 3.(x + c)^2`
⇒ `(dy)/(dx) * (2y)/3 = (x + c)^2`
Taking a cube on both sides, we get
`[(x + c)^2]^3 = ((2y)/3 * (dy)/(dx))^3`
⇒ `(y^2)^2 = (8y^2)/27 xx ((dy)/(dx))^3`
⇒ `y^4 xx 27/(8y^3) = ((dy)/(dx))^3`
⇒ `((dy)/(dx))^3 = (27 y)/8`
Taking the cube root of both sides we get,
`(dy)/(dx) = 3/2 root(3)(y)`
This is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
`((ds)/(dt))^4 + 3s (d^2s)/(dt^2) = 0`
For the differential equation given below, indicate its order and degree (if defined).
`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`y = xsin 3x : (d^2y)/(dx^2) + 9y - 6 cos 3x = 0`
Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]
What is the degree of the following differential equation?
The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^3 + \left( \frac{dy}{dx} \right)^2 + \sin\left( \frac{dy}{dx} \right) + 1 = 0\], is
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 + 7"x" + 5 = 0`
Determine the order and degree of the following differential equation:
`"dy"/"dx" = 3"y" + root(4)(1 + 5 ("dy"/"dx")^2)`
Determine the order and degree of the following differential equations.
`dy/dx = 7 (d^2y)/dx^2`
Determine the order and degree of the following differential equations.
`((d^3y)/dx^3)^(1/6) = 9`
Fill in the blank:
The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.
Find the order and degree of the following differential equation:
`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`
Select and write the correct alternative from the given option for the question
The order and degree of `(("d"y)/("d"x))^3 - ("d"^3y)/("d"x^3) + y"e"^x` = 0 are respectively
Order and degree of differential equation are always ______ integers
State whether the following statement is True or False:
The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined
The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is
The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.
The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.
The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.
Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.
The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.
Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0
If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.
Find the general solution of the following differential equation:
`(dy)/(dx) = e^(x-y) + x^2e^-y`
The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.
Find the order and degree of the differential equation
`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`