हिंदी

∫x(x+2)(x+3)dx = ______ + ∫3x+3dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`

रिक्त स्थान भरें

उत्तर

`int x/((x + 2)(x + 3)) dx = bb(int (-2)/(x + 2))dx + int 3/(x + 3) dx`

Explanation:

Let `x/((x + 2)(x + 3)) = A/(x + 2) + B/(x + 3)`

⇒ x = A(x + 3) + B(x + 2)

⇒ x = (A + B)x + (3A + 2B)

On equating coefficients of like terms, we get

A + B = 1   .......(1)

⇒ B = 1 – A

⇒ B = 1 – (– 2) = 3

⇒ B = 3

And 3A + 2B = 0  ......(2)

⇒ 3A + 2(1 – A) = 0

⇒ 3A + 2 – 2A = 0

⇒ A + 2 = 0

⇒ A = – 2

∴ `int x/((x + 2)(x + 3)) dx = int (-2)/(x + 2) dx + int 3/(x + 3) dx`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

APPEARS IN

संबंधित प्रश्न

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x.cos^3x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: ∫ (log x)2 dx


`int 1/sqrt(2x^2 - 5)  "d"x`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


`int(1-x)^-2 dx` = ______


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`int e^(logcosx)dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate:

`int x^2 cos x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×