Advertisements
Advertisements
प्रश्न
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
उत्तर
`int x/((x + 2)(x + 3)) dx = bb(int (-2)/(x + 2))dx + int 3/(x + 3) dx`
Explanation:
Let `x/((x + 2)(x + 3)) = A/(x + 2) + B/(x + 3)`
⇒ x = A(x + 3) + B(x + 2)
⇒ x = (A + B)x + (3A + 2B)
On equating coefficients of like terms, we get
A + B = 1 .......(1)
⇒ B = 1 – A
⇒ B = 1 – (– 2) = 3
⇒ B = 3
And 3A + 2B = 0 ......(2)
⇒ 3A + 2(1 – A) = 0
⇒ 3A + 2 – 2A = 0
⇒ A + 2 = 0
⇒ A = – 2
∴ `int x/((x + 2)(x + 3)) dx = int (-2)/(x + 2) dx + int 3/(x + 3) dx`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Evaluate: ∫ (log x)2 dx
`int 1/sqrt(2x^2 - 5) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`int(1-x)^-2 dx` = ______
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(logcosx)dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate:
`int x^2 cos x dx`