Advertisements
Advertisements
प्रश्न
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
उत्तर
Let `I = int (x cos^-1 x)/sqrt(1-x^2) dx`
Put cos-1 x = t
`- 1/sqrt(1-x^2) dx = dt`
`therefore I = - int t cos t dt`
`= - [t int cos t dt - int (d/dt (t)* int cos t dt) dt]`
`= -t sin t + int sin t dt = -t sint - cos t + C`
`= -t sqrt (1 - cos^2 t) - cos t + C`
`= - cos^-1 x sqrt (1 - x^2) - x + C`
`= -[cos^-1 x* sqrt (1 - x^2) + x] + C`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in `x^2e^x`.
Integrate the function in x2 log x.
Integrate the function in (x2 + 1) log x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in e2x sin x.
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
`int 1/(4x + 5x^(-11)) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int(x + 1/x)^3 dx` = ______.
`int "e"^x x/(x + 1)^2 "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int 1/sqrt(x^2 - 9) dx` = ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Evaluate:
`int e^(logcosx)dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate `int tan^-1x dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^2e^(4x)dx`