हिंदी

Integrate the function in xcos-1x1-x2. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.

योग

उत्तर

Let `I = int (x cos^-1 x)/sqrt(1-x^2)  dx`

Put cos-1 x = t

`- 1/sqrt(1-x^2)  dx = dt`

`therefore I = - int t cos t  dt`

`= - [t int cos t dt - int (d/dt (t)* int cos t  dt) dt]`

`= -t sin t + int sin t  dt = -t sint - cos t + C`

`= -t sqrt (1 - cos^2 t) - cos t + C`

`= - cos^-1 x sqrt (1 - x^2) - x + C`

`= -[cos^-1 x* sqrt (1 - x^2) + x] + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.6 [पृष्ठ ३२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.6 | Q 11 | पृष्ठ ३२७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Integrate the function in `x^2e^x`.


Integrate the function in xlog x.


Integrate the function in (x2 + 1) log x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in e2x sin x.


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


`int 1/(4x + 5x^(-11))  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int "e"^x x/(x + 1)^2  "d"x`


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int cot "x".log [log (sin "x")] "dx"` = ____________.


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int 1/sqrt(x^2 - 9) dx` = ______.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Evaluate:

`int e^(logcosx)dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate `int tan^-1x  dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^2e^(4x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×