Advertisements
Advertisements
प्रश्न
Integrate the function in x sec2 x.
उत्तर
Let `I = int x sec^2 x dx`
Put `u = x, v = sec^2 x`
`therefore int uv dx = u int v dx - int ((du)/dx int v dx) dx`
`= x int sec^2 x dx - int [(d(x))/dx int sec^2 x dx] dx`
`= x tan x - int 1. tan x dx`
`= x tan x + log abs (cos x) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin x.
Integrate the function in (sin-1x)2.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`int (logx)^2 dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
The value of `inta^x.e^x dx` equals