Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
विकल्प
`1/15 log((x + 2)/(x - 1)) + "c"`
`1/15 log((x + 8)/(x + 7)) + "c"`
`1/15 log((x - 8)/(x + 7)) + "c"`
(x – 8)(x – 7) + c
उत्तर
`1/15 log((x - 8)/(x + 7)) + "c"`
APPEARS IN
संबंधित प्रश्न
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x.sin^2x.dx`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: ∫ (log x)2 dx
`int (cos2x)/(sin^2x cos^2x) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int(x + 1/x)^3 dx` = ______.
`int 1/x "d"x` = ______ + c
`int 1/sqrt(x^2 - 9) dx` = ______.
Evaluate:
`int e^(ax)*cos(bx + c)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`