हिंदी

Integrate the following with respect to the respective variable : t3(t+1)2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`

योग

उत्तर

Let I = `int t^2/(t + 1)^2*dt`

= `int ((t^3 + 1) - 1)/(t + 1)^2*dt`

= `int ((t + 1)(t^2 - t + 1) - 1)/(t + 1)^2*dt`

= `int [(t^2 - t + 1)/(t + 1) - (1)/((t + 1^2))]*dt`

= `int [((t + 1)(t - 2) + 3)/(t + 1) - (1)/((t + 1)^2)]*dt`

= `int[t - 2 + 3/(t + 1) - 1/((t + 1)^2)]*dt`

= `int t*dt - 2 int 1*dt + 3 int (1)/(t + 1)*dt - int (1)/((t + 1)^2)*dt`

= `t^2/(2) - 2t + 3|log|t + 1| - ((t + 1)-1)/((-1)) + c`

= `t^2/(2) - 2t + 3log|t + 1| + 1/(t + 1) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 2.4 | पृष्ठ १५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Integrate : sec3 x w. r. t. x.


Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x sin x.


Integrate the function in x sin 3x.


Integrate the function in (sin-1x)2.


Integrate the function in x sec2 x.


Integrate the function in tan-1 x.


Integrate the function in (x2 + 1) log x.


Integrate the function in `(xe^x)/(1+x)^2`.


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "dx"/(5 - 16"x"^2)`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int log x * [log ("e"x)]^-2` dx = ?


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int 1/sqrt(x^2 - 9) dx` = ______.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`intsqrt(1+x)  dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


Evaluate the following.

`int x^3 e^(x^2) dx`


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int(xe^x)/((1+x)^2)  dx` = ______


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`int (logx)^2 dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×