Advertisements
Advertisements
प्रश्न
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
उत्तर
`1/(2"a") log |(x - "a")/(x + "a")|`
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x sin 3x.
Integrate the function in ex (sinx + cosx).
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^3.logx.dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
∫ x log x dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int ("d"x)/(x - x^2)` = ______
`int cot "x".log [log (sin "x")] "dx"` = ____________.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int(1-x)^-2 dx` = ______
`inte^(xloga).e^x dx` is ______
Evaluate:
`int e^(logcosx)dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`