हिंदी

Integrate the function in x sin 3x. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in x sin 3x.

योग

उत्तर

Let `I = int x. sin 3x  dx`

`= x int sin  3x  dx - int [d/dx  x int sin  3x  dx] dx`

`= x (- (cos 3x)/3) - int 1 ((- cos 3x)/3)  dx`

`= (x cos 3x)/3 + 1/3 int cos 3x  dx`

`= (x cos 3x)/3 + 1/3* (sin 3x)/3 + C`

`= - (x cos 3x)/3 + 1/9  sin 3x + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.6 [पृष्ठ ३२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.6 | Q 2 | पृष्ठ ३२७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in x sin x.


Integrate the function in x log 2x.


Integrate the function in `e^x (1/x - 1/x^2)`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


`int sqrt(tanx) + sqrt(cotx)  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


∫ log x · (log x + 2) dx = ?


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


`int(logx)^2dx` equals ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate `int tan^-1x  dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×