Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
उत्तर
Let I = `int cot^-1 (1 - x + x^2)*dx`
= `int tan^-1 (1/(1 - x + x^2))*dx`
= `int tan^-1 [(x + (1 - x))/(1 - x(1 - x))]`
= `int [tan^-1 x + tan^-1 (1 - x)]*dx`
= `int tan^-1 x*dx + int tan^-1 (1 - x)*dx`
∴ I = I1 + I2 ...(1)
I1 = `int tan^-1 x*dx = int(tan^-1x)1*dx`
= `(tan^-1x)* int 1dx - [d/dx (tan^-1x)* int 1dx]*dx`
= `(tan^-1x)x - int 1/(1 + x^2)*x*dx`
= `xtan^-1 x - (1)/(2) int (2x)/(1 + x^2)*dx`
∴ I1 = `x tan^-1x - (1)/(2)log|1 + x^2| + c_1`
...`[because d/dx (1 + x^2) = 2x and int (f'(x))/f(x) dx = log|f(x)| + c]`
I2 = `int tan^-1 (1 - x)*dx`
= `int tan^-1 (1 - x)]*1dx`
= `[tan^-1 (1 - x)]*int 1dx - int {d/dx [tan^-1 (1 - x)]* int 1dx}*dx`
= `[tan^-1 (1 - x)]*x - int (1)/(1 + (1 - x)^2)*(-1)*xdx`
= `xtan^-1 (1 - x) + int x/(1 + 1 - 2x + x^2)*dx`
= `xtan^-1 (1 - x) + int x/(2 - 2x + x^2)*dx`
Let x = `"A"[d/dx (2 - 2x + x^2)] + "B"`
∴ x = A(– 2 + 2x) + B = 2Ax + (–2A + B)
Comparing the coefficient of x and constant on both the sides, we get
1 = 2A and 0 = – 2A + B
∴ A = `(1)/(2) and 0 = -2(1/2) + "B"`
∴ B = 1
∴ x = `(1)/(2)(- 2 + 2x) + 1`
∴ I2= `xtan^-1 (1 - x) + int (1/2(-2 + 2x) + 1)/(2 - 2x + x^2)*dx`
= `xtan^-1 (1 - x) + 1/2 (-2 + 2x)/(2 - 2x + x^2)*dx + int (1)/(2 - 2x + x^2)*dx`
= `xtan^-1 (1 - x) + (1)/(2) log|2 - 2x + x^2| + int (1)/(1 + (1 - 2x + x^2))*dx`
= `xtan^-1 (1 - x) + (1)/(2) log|x^2 - 2x + 2| + int (1)/(1 + (1 - x^2))*dx`
= `xtan^-1 (1 - x) + (1)/(2) log|x^2 - 2x + 2| + (1)/(1) (tan-1 (1 - x))/(-1) + c_2`
= `x tan^-1 (1 - x) + 1/2log|x^2 - 2x + 2| - tan^-1 (1 - x) + c_2`
= `(x - 1)tan^-1 (1 - x) + (1)/(2)log|x^2 - 2x + 2| + c_2`
∴ I2 = `-(1 - x)tan^-1 (1 - x) + (1)/(2)log|x^2 - 2x + 2| + c_2` ...(3)
From (1),(2) and (3), we get
I = `x tan^-1 x - (1)/(2) log|1 + x^2| + c_1 - (1 - x)tan^-1 (1 - x) + 1/2log|x^2 - 2x + 2| + c_2`
= `x tan^-1 x - (1)/(2) log|1 + x^2| - (1 - x)tan^-1 (1 - x) + 1/2 |x^2 - 2x + 2| + c`, where c = c1 + c2.
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
Integrate the function in x sin-1 x.
Integrate the function in x tan-1 x.
Integrate the function in x sec2 x.
Integrate the function in (x2 + 1) log x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in e2x sin x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`intx^2 e^(x^3) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int sin4x cos3x "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int(x + 1/x)^3 dx` = ______.
`int 1/x "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int(logx)^2dx` equals ______.
`int_0^1 x tan^-1 x dx` = ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`intsqrt(1+x) dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int1/(x+sqrt(x)) dx` = ______
`inte^(xloga).e^x dx` is ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(logcosx)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate:
`int x^2 cos x dx`
The value of `inta^x.e^x dx` equals
Evaluate the following.
`intx^3 e^(x^2)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.