हिंदी

Integrate the following w.r.t.x : cot–1 (1 – x + x2) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t.x : cot–1 (1 – x + x2)

योग

उत्तर

Let I = `int cot^-1 (1 - x + x^2)*dx`

= `int tan^-1 (1/(1 - x + x^2))*dx`

= `int tan^-1 [(x + (1 - x))/(1 - x(1 - x))]`

= `int [tan^-1 x + tan^-1 (1 - x)]*dx`

= `int tan^-1 x*dx + int tan^-1 (1 - x)*dx`

∴ I = I1 + I2                                                 ...(1)

I1 = `int tan^-1 x*dx = int(tan^-1x)1*dx`

= `(tan^-1x)* int 1dx - [d/dx (tan^-1x)* int 1dx]*dx`

= `(tan^-1x)x - int 1/(1 + x^2)*x*dx`

= `xtan^-1 x - (1)/(2) int (2x)/(1 + x^2)*dx`

∴ I1 = `x tan^-1x - (1)/(2)log|1 + x^2| + c_1`

  ...`[because d/dx (1 + x^2) = 2x and int (f'(x))/f(x) dx = log|f(x)| + c]`

I2 = `int tan^-1 (1 - x)*dx`

= `int tan^-1 (1 - x)]*1dx`

= `[tan^-1 (1 - x)]*int 1dx - int {d/dx [tan^-1 (1 - x)]* int 1dx}*dx`

= `[tan^-1 (1 - x)]*x - int (1)/(1 + (1 - x)^2)*(-1)*xdx`

= `xtan^-1 (1 - x) + int x/(1 + 1 - 2x + x^2)*dx`

= `xtan^-1 (1 - x) + int x/(2 - 2x + x^2)*dx`

Let x = `"A"[d/dx (2 - 2x + x^2)] + "B"`

∴ x = A(– 2 + 2x) + B = 2Ax + (–2A + B)
Comparing the coefficient of x and constant on both the sides, we get
1 = 2A and 0 = – 2A + B

∴ A = `(1)/(2) and 0 = -2(1/2) + "B"`

∴ B = 1

∴ x = `(1)/(2)(- 2 + 2x) + 1`

∴ I2= `xtan^-1 (1 - x) + int (1/2(-2 + 2x) + 1)/(2 - 2x + x^2)*dx`

= `xtan^-1 (1 - x) + 1/2 (-2 + 2x)/(2 - 2x + x^2)*dx + int (1)/(2 - 2x + x^2)*dx`

= `xtan^-1 (1 - x) + (1)/(2) log|2 - 2x + x^2| + int (1)/(1 + (1 - 2x + x^2))*dx`

= `xtan^-1 (1 - x) + (1)/(2) log|x^2 - 2x + 2| + int (1)/(1 + (1 -  x^2))*dx`

= `xtan^-1 (1 - x) + (1)/(2) log|x^2 - 2x + 2| + (1)/(1) (tan-1 (1 - x))/(-1) + c_2`

= `x tan^-1 (1 - x) + 1/2log|x^2 - 2x + 2| - tan^-1 (1 - x) + c_2`

= `(x - 1)tan^-1 (1 - x) + (1)/(2)log|x^2 - 2x + 2| + c_2`

∴ I2 = `-(1 - x)tan^-1 (1 - x) + (1)/(2)log|x^2 - 2x + 2| + c_2`             ...(3)

From (1),(2) and (3), we get

I = `x tan^-1 x - (1)/(2) log|1 + x^2| + c_1 - (1 - x)tan^-1 (1 - x) + 1/2log|x^2 - 2x + 2| + c_2`

= `x tan^-1 x - (1)/(2) log|1 + x^2| - (1 - x)tan^-1 (1 - x) + 1/2 |x^2 - 2x + 2| + c`, where c = c1 + c2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 3.02 | पृष्ठ १५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Integrate : sec3 x w. r. t. x.


Integrate the function in x sin-1 x.


Integrate the function in x tan-1 x.


Integrate the function in x sec2 x.


Integrate the function in (x2 + 1) log x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in e2x sin x.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`intx^2 e^(x^3) dx` equals: 


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int sin4x cos3x  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int logx/(1 + logx)^2  "d"x`


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


`int(logx)^2dx` equals ______.


`int_0^1 x tan^-1 x  dx` = ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


`intsqrt(1+x)  dx` = ______


Evaluate the following.

`int x^3 e^(x^2) dx`


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


`int1/(x+sqrt(x))  dx` = ______


`inte^(xloga).e^x dx` is ______


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`int e^(logcosx)dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate `int tan^-1x  dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int (1 + x + x^2/(2!))dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate:

`int x^2 cos x  dx`


The value of `inta^x.e^x dx` equals


Evaluate the following.

`intx^3 e^(x^2)dx`


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×