हिंदी

Evaluate the following: d∫(cos5x+cos4x)1-2cos3xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`

योग

उत्तर

Let I = `int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`

= `int (2cos  (5x + 4x)/2 * cos  (5x - 4x)/2)/(1 - 2(2 cos^2  (3x)/2 - 1)) "d"x`

= `int (2cos  (9x)/2 * cos  x/2)/(1 - 4 cos^2  (3x)/2 + 2) "d"x`

= `int (2cos  (9x)/2 * cos  x/2)/(3 - 4 cos^2  (3x)/2)  "d"x`

= `- int (2 cos  (9x)/2 * cos  x/2)/(4 cos^2  (3x)/2 - 3)  "d"x`

= `- int (2cos  (9x)/2 * cos  x/2 * cos  (3x)/2)/(4 cos^2  (3x)/2 - 3 cos  (3x)/2) "d"x`  ....`["Multiplying and dividing by" cos  (3x)/2]`

= `int (2  cos  (9x)/2 * cos  x/2 * cos  (3x)/2)/(cos 3 * (3x)/2)  "dx"`  ......[∵ cos 3x = 4 cos3x – 3 cos x]

= `- int (2cos  (9x)/2 * cos  x/2 * cos  (3x)/2)/(cos  (9x)/2)  "d"x`

= `- int 2 cos  (3x)/2 * cos  x/2  "d"x`

= `- int [cos((3x)/2 + x/2) + cos((3x)/2 - x/2)] "d"x`

= `- int (cos 2x + cos x) "d"x`  ....[∵ 2 cos A cos B = cos (A + B) + cos (A – B)]

= `- int cos 2x  "d"x - int cos x "d"x`

= `- 1/2 sin 2x - sin x + "C"`

Hence, I = `- [1/2 sin 2x + sin x] + "C"`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 22 | पृष्ठ १६४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the function in x sin-1 x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int "dx"/("9x"^2 - 25)`


`int sin4x cos3x  "d"x`


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int(logx)^2dx` equals ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×