Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
उत्तर
Let I = `int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
= `int (2cos (5x + 4x)/2 * cos (5x - 4x)/2)/(1 - 2(2 cos^2 (3x)/2 - 1)) "d"x`
= `int (2cos (9x)/2 * cos x/2)/(1 - 4 cos^2 (3x)/2 + 2) "d"x`
= `int (2cos (9x)/2 * cos x/2)/(3 - 4 cos^2 (3x)/2) "d"x`
= `- int (2 cos (9x)/2 * cos x/2)/(4 cos^2 (3x)/2 - 3) "d"x`
= `- int (2cos (9x)/2 * cos x/2 * cos (3x)/2)/(4 cos^2 (3x)/2 - 3 cos (3x)/2) "d"x` ....`["Multiplying and dividing by" cos (3x)/2]`
= `int (2 cos (9x)/2 * cos x/2 * cos (3x)/2)/(cos 3 * (3x)/2) "dx"` ......[∵ cos 3x = 4 cos3x – 3 cos x]
= `- int (2cos (9x)/2 * cos x/2 * cos (3x)/2)/(cos (9x)/2) "d"x`
= `- int 2 cos (3x)/2 * cos x/2 "d"x`
= `- int [cos((3x)/2 + x/2) + cos((3x)/2 - x/2)] "d"x`
= `- int (cos 2x + cos x) "d"x` ....[∵ 2 cos A cos B = cos (A + B) + cos (A – B)]
= `- int cos 2x "d"x - int cos x "d"x`
= `- 1/2 sin 2x - sin x + "C"`
Hence, I = `- [1/2 sin 2x + sin x] + "C"`.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
`int sin4x cos3x "d"x`
Evaluate `int 1/(x log x) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int(logx)^2dx` equals ______.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int_0^1 x tan^-1 x dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`