Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
उत्तर
Let I = `int "e"^"x" (1/"x" - 1/"x"^2)`dx
Put f(x) = `1/"x"`
∴ f '(x) = `1/"x"`
∴ I = `int "e"^"x" ["f"("x") + "f" '("x")]` dx
`= "e"^"x" * "f"("x") + "c"`
∴ I = `"e"^"x" * 1/"x" + "c"`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
`int sin4x cos3x "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
Find `int_0^1 x(tan^-1x) "d"x`
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`