Advertisements
Advertisements
प्रश्न
`int "e"^x x/(x + 1)^2 "d"x`
उत्तर
Let I = `int "e"^x(x/((x + 1)^2))"d"x`
= `int"e"^x (((x + 1) - 1)/(x + 1)^2)"d"x`
= `int"e"^x ((x + 1)/(x + 1)^2 - 1/(x + 1)^2)"d"x`
= `int"e"^x (1/(x + 1) - 1/(x + 1)^2)"d"x`
Put f(x) = `1/(x + 1)`
∴ f'(x) = `(-1)/(x + 1)^2`
∴ I = `int"e"^x["f"(x) + "f'"(x)]"d"x`
= `"e"^x*"f"(x) + "c"`
∴ I = `"e"^x (1/(x + 1)) + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x (log x)2.
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: ∫ (log x)2 dx
`int 1/(4x + 5x^(-11)) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`