Advertisements
Advertisements
प्रश्न
Evaluate: ∫ (log x)2 dx
उत्तर
Let I = ∫ (log x)2 dx
I = ∫ (log x)2 . 1 dx
I = `(log x)^2 int 1. "dx" − int ["d"/"dx" (log x)^2 int 1. "dx"] "dx"`
I = `x(log x)^2 − int 2 log x. 1/cancelx. cancelx "dx"`
I = `x(log x)^2 − 2 int log x. 1 "dx"`
I = `x(log x)^2 − 2[log x int 1. "dx" − int {"d"/"dx" (log x) int 1. "dx"}]`dx
I = `x(log x)^2 − 2[(log x)x − int 1/cancelx. cancelx. "dx"]`
I = `x(log x)^2 − 2[xlog x − int 1. "dx"]`
I = `x(log x)^2 − 2(x log x − x) + c`
∴ I = x(log x)2 − 2x log x + 2x + c
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
Integrate the function in x sin-1 x.
Integrate the function in (x2 + 1) log x.
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : e2x sin x cos x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int sin4x cos3x "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int 1/sqrt(x^2 - 9) dx` = ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int logx dx = x(1+logx)+c`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.