Advertisements
Advertisements
प्रश्न
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
Let 4ex – 25 = `A(2e^x - 5) + B d/(dx) (2e^x - 5)`
= 2exA – 5A + B(2ex)
2 × 2ex – 25 = 2ex (A + B) – 5A
∴ A + B = 2
And –25 = –5A
∴ A = 5
5 + B = 2
∴ B = 2 – 5 = – 3.
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x log x.
Integrate the function in x sin-1 x.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: ∫ (log x)2 dx
`int(x + 1/x)^3 dx` = ______.
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate:
`int x^2 cos x dx`