Advertisements
Advertisements
Question
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Options
True
False
Solution
This statement is True.
Explanation:
Let 4ex – 25 = `A(2e^x - 5) + B d/(dx) (2e^x - 5)`
= 2exA – 5A + B(2ex)
2 × 2ex – 25 = 2ex (A + B) – 5A
∴ A + B = 2
And –25 = –5A
∴ A = 5
5 + B = 2
∴ B = 2 – 5 = – 3.
APPEARS IN
RELATED QUESTIONS
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in `x^2e^x`.
Integrate the function in tan-1 x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^3.tan^-1x.dx`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int (sinx)/(1 + sin x) "d"x`
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int 1/(x log x) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int(logx)^2dx` equals ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate the following.
`int x^3 e^(x^2) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int(1 + x + x^2/(2!))dx`.