Advertisements
Advertisements
Question
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Solution
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 +bb (x + 4)`
= `int_0^2 dx/(-x^2 + x + 1/4 - bb(1/4) + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (bbsqrt17/2)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
APPEARS IN
RELATED QUESTIONS
Integrate : sec3 x w. r. t. x.
Integrate the function in `x^2e^x`.
Integrate the function in tan-1 x.
Integrate the function in (x2 + 1) log x.
Integrate the function in `(xe^x)/(1+x)^2`.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int 1/x "d"x` = ______ + c
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate:
`int x^2 cos x dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`