English

Complete the following activity: ∫02dx4+x-x2 = ∫02dx-x2+□+□ = ∫02dx-x2+x+14-□+4 = ∫02dx(x-12)2-(□)2 = 117log(20+41720-417) - Mathematics and Statistics

Advertisements
Advertisements

Question

Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`

Fill in the Blanks
Sum

Solution

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 +bb (x + 4)`

= `int_0^2 dx/(-x^2 + x + 1/4 - bb(1/4) + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (bbsqrt17/2)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

Integrate : sec3 x w. r. t. x.


Integrate the function in `x^2e^x`.


Integrate the function in tan-1 x.


Integrate the function in (x2 + 1) log x.


Integrate the function in `(xe^x)/(1+x)^2`.


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int x.cos^3x.dx`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


`int 1/x  "d"x` = ______ + c


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int(1-x)^-2 dx` = ______


`int1/sqrt(x^2 - a^2) dx` = ______


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate:

`int x^2 cos x  dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×