Advertisements
Advertisements
Question
`int 1/sqrt(x^2 - 8x - 20) "d"x`
Solution
Let I = `int 1/sqrt(x^2 - 8x - 20) "d"x`
= `int 1/sqrt(x^2 - 2.4x + 16 - 16 - 20) "d"x`
= `int ("d"x)/sqrt((x - 4)^2 - 36) "d"x`
= `int ("d"x)/sqrt((x - 4)^2 - 6^2) "d"x`
= `log|(x - 4) + sqrt((x - 4)^2 - 6^2)| + "c"`
∴ I = `log|(x - 4) + sqrt(x^2 - 8x - 20)| + "c"`
APPEARS IN
RELATED QUESTIONS
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
`int (sinx)/(1 + sin x) "d"x`
Evaluate `int 1/(x(x - 1)) "d"x`
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`intsqrt(1+x) dx` = ______
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.