Advertisements
Advertisements
Question
Evaluate `int 1/(x(x - 1)) "d"x`
Solution
Let I = `int 1/(x(x - 1)) "d"x`
= `int(x - x + 1)/(x(x - 1)) "d"x`
= `int(x - (x - 1))/(x(x - 1)) "d"x`
= `int(1/(x - 1) - 1/x) "d"x`
= `int 1/(x - 1) "d"x - int 1/x "d"x`
= `log |x - 1| - log |x| + "c"`
∴ I = `log |(x - 1)/x| + "c"`
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int x.cos^3x.dx`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : sec4x cosec2x
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int log x * [log ("e"x)]^-2` dx = ?
Solve: `int sqrt(4x^2 + 5)dx`
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
`intsqrt(1+x) dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`