Advertisements
Advertisements
Question
Evaluate `int(3x^2 - 5)^2 "d"x`
Solution
Let I = `int(3x^2 - 5)^2 "d"x`
= `int (9x^4 - 30x^2 + 25) "d"x`
= `9intx^4"d"x - 30int x^2"d"x + 25int"d"x`
= `9((x^5)/5) - 30((x^3)/3) + 25x + "c"`
∴ I = `9/5 x^5 - 10x^3 + 25x + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
`int sqrt(1 + "x"^2) "dx"` =
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate `int 1/((2"x" + 3))` dx
`int logx/x "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int x/(x + 2) "d"x`
`int sec^6 x tan x "d"x` = ______.
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`