Advertisements
Advertisements
Question
`int sqrt(1 + "x"^2) "dx"` =
Options
`"x"/2 sqrt(1 + "x"^2) + 1/2 log ("x" + sqrt(1 + "x"^2))`+ c
`2/3 (1 + "x"^2)^(3/2) + "c"`
`1/3 (1 + "x"^2)` + c
`("(x)")/sqrt(1 + "x"^2)` + c
Solution
`"x"/2 sqrt(1 + "x"^2) + 1/2 log ("x" + sqrt(1 + "x"^2))`+ c
Explanation:
∵ `int sqrt(a^2 + "x"^2) "dx"` = `x/2 sqrt(a^2 + x^2) + a^2/2 log | x + sqrt(a^2 + x^2)| + c`
∴ I = `x/2 sqrt(1 + x^2) + 1/2 log |x + sqrt(1 + x^2) + c`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
sec2(7 – 4x)
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int (sin4x)/(cos 2x) "d"x`
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int cos^3x dx` = ______.
Write `int cotx dx`.
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int1/(x^2+4x-5) dx`