English

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board chapter 5 - Integration [Latest edition]

Advertisements

Chapters

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board chapter 5 - Integration - Shaalaa.com
Advertisements

Solutions for Chapter 5: Integration

Below listed, you can find solutions for Chapter 5 of Maharashtra State Board Balbharati for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board.


EXERCISE 5.1EXERCISE 5.2EXERCISE 5.3EXERCISE 5.4EXERCISE 5.5EXERCISE 5.6MISCELLANEOUS EXERCISE - 5
EXERCISE 5.1 [Page 119]

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board 5 Integration EXERCISE 5.1 [Page 119]

EXERCISE 5.1 | Q (i) | Page 119

Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx

EXERCISE 5.1 | Q (ii) | Page 119

Evaluate `int (1 + "x" + "x"^2/(2!))`dx

EXERCISE 5.1 | Q (iii) | Page 119

Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx

EXERCISE 5.1 | Q (iv) | Page 119

Evaluate `int (3"x"^2 - 5)^2` dx

EXERCISE 5.1 | Q (v) | Page 119

Evaluate `int 1/("x" ("x" - 1))` dx

EXERCISE 5.1 | Q (vi) | Page 119

If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).

EXERCISE 5.1 | Q (vii) | Page 119

If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).

EXERCISE 5.1 | Q (viii) | Page 119

If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).

EXERCISE 5.2 [Pages 122 - 123]

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board 5 Integration EXERCISE 5.2 [Pages 122 - 123]

EXERCISE 5.2 | Q (i) | Page 122

Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx

EXERCISE 5.2 | Q (ii) | Page 123

Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx

EXERCISE 5.2 | Q (iii) | Page 123

Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx

EXERCISE 5.2 | Q (iv) | Page 123

Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx

EXERCISE 5.2 | Q (v) | Page 123

Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx

EXERCISE 5.2 | Q (vi) | Page 123

Evaluate the following.

`int 1/("x" log "x")`dx

EXERCISE 5.2 | Q (vii) | Page 123

Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx

EXERCISE 5.2 | Q (viii) | Page 123

Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx

EXERCISE 5.2 | Q (ix) | Page 123

Evaluate the following.

`int 1/(sqrt"x" + "x")` dx

EXERCISE 5.2 | Q (x) | Page 123

Evaluate the following.

`int 1/(x(x^6 + 1))` dx 

EXERCISE 5.3 [Page 123]

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board 5 Integration EXERCISE 5.3 [Page 123]

EXERCISE 5.3 | Q 1) | Page 123

Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt

EXERCISE 5.3 | Q 2) | Page 123

Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx

EXERCISE 5.3 | Q 3) | Page 123

Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx

EXERCISE 5.3 | Q 4) | Page 123

Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx

EXERCISE 5.4 [Page 129]

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board 5 Integration EXERCISE 5.4 [Page 129]

EXERCISE 5.4 | Q 1) | Page 129

Evaluate the following.

`int 1/(4"x"^2 - 1)` dx

EXERCISE 5.4 | Q 2) | Page 129

Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx

EXERCISE 5.4 | Q 3) | Page 129

Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx

EXERCISE 5.4 | Q 4) | Page 129

Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`

EXERCISE 5.4 | Q 5) | Page 128

Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx

EXERCISE 5.4 | Q 6) | Page 129

Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx

EXERCISE 5.4 | Q 7) | Page 129

Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx

EXERCISE 5.4 | Q 8) | Page 129

Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx

EXERCISE 5.4 | Q 9) | Page 129

Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx

EXERCISE 5.4 | Q 10) | Page 129

Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx

EXERCISE 5.4 | Q 11) | Page 129

Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx

EXERCISE 5.5 [Page 133]

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board 5 Integration EXERCISE 5.5 [Page 133]

EXERCISE 5.5 | Q 1) | Page 133

Evaluate the following.

∫ x log x dx

EXERCISE 5.5 | Q 2) | Page 133

Evaluate the following.

`int "x"^2 "e"^"4x"`dx

EXERCISE 5.5 | Q 3) | Page 133

Evaluate the following.

`int "x"^2 "e"^"3x"`dx

EXERCISE 5.5 | Q 4) | Page 133

Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx

EXERCISE 5.5 | Q 5) | Page 133

Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx

EXERCISE 5.5 | Q 6) | Page 133

Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx

EXERCISE 5.5 | Q 7) | Page 133

Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx

EXERCISE 5.5 | Q 8) | Page 133

Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx

EXERCISE 5.5 | Q 9) | Page 133

Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx

EXERCISE 5.5 | Q 10) | Page 133

Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx

EXERCISE 5.6 [Page 135]

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board 5 Integration EXERCISE 5.6 [Page 135]

EXERCISE 5.6 | Q 1) | Page 135

Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx

EXERCISE 5.6 | Q 2) | Page 135

Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx

EXERCISE 5.6 | Q 3) | Page 135

Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx

EXERCISE 5.6 | Q 4) | Page 135

Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx

EXERCISE 5.6 | Q 5) | Page 135

Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx

EXERCISE 5.6 | Q 6) | Page 135

Evaluate: `int 1/("x"("x"^5 + 1))` dx

EXERCISE 5.6 | Q 7) | Page 135

Evaluate: `int 1/("x"("x"^"n" + 1))` dx

EXERCISE 5.6 | Q 8) | Page 135

Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx

MISCELLANEOUS EXERCISE - 5 [Pages 137 - 139]

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board 5 Integration MISCELLANEOUS EXERCISE - 5 [Pages 137 - 139]

MISCELLANEOUS EXERCISE - 5 | Q I. 1) | Page 137

Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is

  • `2sqrt(1 - "x") + "c"`

  • - `2sqrt(1 - "x") + "c"`

  • `sqrt"x"` + c

  • x + c

MISCELLANEOUS EXERCISE - 5 | Q I. 2) | Page 137

`int sqrt(1 + "x"^2) "dx"` =

  • `"x"/2 sqrt(1 + "x"^2) + 1/2 log ("x" + sqrt(1 + "x"^2))`+ c

  • `2/3 (1 + "x"^2)^(3/2) + "c"`

  • `1/3 (1 + "x"^2)` + c

  • `("(x)")/sqrt(1 + "x"^2)` + c

MISCELLANEOUS EXERCISE - 5 | Q I. 3) | Page 137

Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =

  • `(3)^("x"^3) + "c"`

  • `(3)^("x"^3)/(3 * log 3) + "c"`

  • `log 3 (3)^("x"^3)` + c

  • `"x"^2 (3)^("x"^3) + "c"`

MISCELLANEOUS EXERCISE - 5 | Q I. 4) | Page 137

`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?

  • `1/3`

  • `1/2`

  • `1/4`

  • 2

MISCELLANEOUS EXERCISE - 5 | Q I. 5) | Page 137

Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 

  • log x – log (1 – x) + c

  • log (1 - x2) + c

  • - log x + log(1 - x) + c

  • log (x - x2) + c 

MISCELLANEOUS EXERCISE - 5 | Q I. 6) | Page 137

`int "dx"/(("x" - 8)("x" + 7))`=

  • `1/15 log |("x" + 2)/("x" - 1)| + "c"`

  • `1/15 log |("x" + 8)/("x" + 7)| + "c"`

  • `1/15 log |("x"- 8)/("x" + 7)| + "c"`

  • (x − 8)(x − 7) + c

  • `1/15 log |("x" + 2)/("x"+ 1)| + "c"`

  • (x − 8)(x + 7) + c

MISCELLANEOUS EXERCISE - 5 | Q I. 7) | Page 137

`int ("x" + 1/"x")^3 "dx"` = ______

  • `1/4 ("x" + 1/"x")^4` + c

  • `"x"^4/4 + "3x"^2/2 + 3 log "x" - 1/"2x"^2 + "c"`

  • `"x"^4/4 + "3x"^2/2 + 3 log "x" + 1/"x"^2 + "c"`

  • `("x" - "x"^-1)^3` + c

MISCELLANEOUS EXERCISE - 5 | Q I. 8) | Page 137

Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 

  • `"e"^"x" - 1/(3"e"^"3x")` + c

  • `"e"^"x" + 1/(3"e"^"3x")` + c

  • `"e"^"-x" + 1/(3"e"^"3x")` + c

  • `"e"^"-x" + 1/(3"e"^"3x") + "c"`

MISCELLANEOUS EXERCISE - 5 | Q I. 9) | Page 137

Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 

  • `(1 + "x")^-1` + c

  • `(1 - "x")^-1` + c

  • `(1 - "x")^-1 - 1` + c

  • `(1 - "x")^-1 + 1` + c

MISCELLANEOUS EXERCISE - 5 | Q I. 10) | Page 138

Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 

  • `(-1)/"x + 1"` + c

  • `((-1)/"x + 1")^5` + c

  • log(x + 1) + c

  • log |x + 1|5 + c 

MISCELLANEOUS EXERCISE - 5 | Q II. 1. | Page 138

Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c

MISCELLANEOUS EXERCISE - 5 | Q II. 2. | Page 138

`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c

MISCELLANEOUS EXERCISE - 5 | Q II. 3. | Page 138

If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______

MISCELLANEOUS EXERCISE - 5 | Q II. 4. | Page 138

Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________

MISCELLANEOUS EXERCISE - 5 | Q II. 5. | Page 138

Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______

MISCELLANEOUS EXERCISE - 5 | Q III. 1. | Page 138

State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t

  • True

  • False

MISCELLANEOUS EXERCISE - 5 | Q III. 2. | Page 138

State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.

  • True

  • False

MISCELLANEOUS EXERCISE - 5 | Q III. 3. | Page 138

State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`

  • True

  • False

MISCELLANEOUS EXERCISE - 5 | Q III. 4. | Page 138

State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.

  • True

  • False

MISCELLANEOUS EXERCISE - 5 | Q III. 5. | Page 138

For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.

  • True

  • False

Solve the following:

MISCELLANEOUS EXERCISE - 5 | Q IV. 1) i) | Page 138

Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 1) ii) | Page 138

Evaluate `int (5"x" + 1)^(4/9)` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 1) iii) | Page 138

Evaluate `int 1/((2"x" + 3))` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 1) iv) | Page 138

Evaluate `int "x - 1"/sqrt("x + 4")` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 1) v) | Page 138

Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).

MISCELLANEOUS EXERCISE - 5 | Q IV. 1) vi) | Page 138

Evaluate: ∫ |x| dx if x < 0

MISCELLANEOUS EXERCISE - 5 | Q IV. 2) i) | Page 138

Evaluate: Find the primitive of `1/(1 + "e"^"x")`

MISCELLANEOUS EXERCISE - 5 | Q IV. 2) ii) | Page 138

Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 2) iii) | Page 138

Evaluate: `int 1/(2"x" + 3"x" log"x")` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 2) iv) | Page 138

Evaluate: `int 1/(sqrt("x") + "x")` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 2) v) | Page 138

Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 3) i) | Page 138

Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`

MISCELLANEOUS EXERCISE - 5 | Q IV. 3) ii) | Page 138

Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`

MISCELLANEOUS EXERCISE - 5 | Q IV. 3) iii) | Page 138

Evaluate: `int "dx"/("9x"^2 - 25)`

MISCELLANEOUS EXERCISE - 5 | Q IV. 3) iv) | Page 139

Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 3) v) | Page 139

Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`

MISCELLANEOUS EXERCISE - 5 | Q IV. 3) vi) | Page 139

Evaluate: `int "dx"/(5 - 16"x"^2)`

MISCELLANEOUS EXERCISE - 5 | Q IV. 3) vii) | Page 139

Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`

MISCELLANEOUS EXERCISE - 5 | Q IV. 3) viii) | Page 139

Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 4) i) | Page 139

Evaluate: ∫ (log x)2 dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 4) ii) | Page 139

Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 4) iii) | Page 139

Evaluate: `int "x" * "e"^"2x"` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 4) iv) | Page 139

Evaluate: `int log ("x"^2 + "x")` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 4) v) | Page 139

Evaluate: `int "e"^sqrt"x"` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 4) vi) | Page 139

Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 4) vii) | Page 139

Evaluate: `int sqrt(x^2 - 8x + 7)` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 5) i) | Page 139

Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 5) ii) | Page 139

Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx

MISCELLANEOUS EXERCISE - 5 | Q IV. 5) iii) | Page 139

Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx

Solutions for 5: Integration

EXERCISE 5.1EXERCISE 5.2EXERCISE 5.3EXERCISE 5.4EXERCISE 5.5EXERCISE 5.6MISCELLANEOUS EXERCISE - 5
Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board chapter 5 - Integration - Shaalaa.com

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board chapter 5 - Integration

Shaalaa.com has the Maharashtra State Board Mathematics Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. Balbharati solutions for Mathematics Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board 5 (Integration) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. Balbharati textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board chapter 5 Integration are Integration, Methods of Integration: Integration by Substitution, Methods of Integration: Integration by Parts, Methods of Integration: Integration Using Partial Fractions.

Using Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board solutions Integration exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in Balbharati Solutions are essential questions that can be asked in the final exam. Maximum Maharashtra State Board Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board students prefer Balbharati Textbook Solutions to score more in exams.

Get the free view of Chapter 5, Integration Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board additional questions for Mathematics Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×