Advertisements
Advertisements
Question
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Solution
I = `intx/(4x^4 - 20x^2 - 3)dx`
= `intx/(4[(x^2)^2 - 5x^2 - 3/4])dx`
= `1/4intx/((x^2)^2 - 5x^2 - 3/4)dx`
Put x2 = t
diff. w.r.t x both sides,
2x = `(dt)/(dx)`
2x.dx = dt
`x.dx = 1/2 dt`
I = `1/4int(1/2.dt)/(t^2 - 5t - 3/4)`
I = `1/4. 1/2int 1/(t^2 - 5t - 3/4)dt`
add and subtract `(1/2 xx -5)^2 = 25/4`
I = `1/8int1/((t^2 - 5t + 25/4) - 3/4 - 25/4)dt`
= `1/8int1/((t - 5/2)^2 - 7)dt`
= `1/8int1/((t - 5/2)^2 - (sqrt7)^2)dt`
I = `1/8. 1/(2(sqrt7)). log(|(t - 5/2 - sqrt7)/(t - 5/2 + sqrt7)|) + c`
= `1/(16sqrt7) . log|((2t)/2 - 5/2 - (2sqrt7)/2)/((2t)/2 - 5/2 + (2sqrt7)/2)| + c`
= `1/(16sqrt7) . log|(2t - 5 - 2sqrt7)/(2t - 5 + 2sqrt7)| + c`
I = `1/(16sqrt7) . log|(2x^2 - 5 - 2sqrt7)/(2x^2 - 5 + 2sqrt7)| + c`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
tan2(2x – 3)
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
`int sqrt(1 + "x"^2) "dx"` =
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int logx/x "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate `int(1+x+x^2/(2!))dx`