Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
उत्तर
I = `intx/(4x^4 - 20x^2 - 3)dx`
= `intx/(4[(x^2)^2 - 5x^2 - 3/4])dx`
= `1/4intx/((x^2)^2 - 5x^2 - 3/4)dx`
Put x2 = t
diff. w.r.t x both sides,
2x = `(dt)/(dx)`
2x.dx = dt
`x.dx = 1/2 dt`
I = `1/4int(1/2.dt)/(t^2 - 5t - 3/4)`
I = `1/4. 1/2int 1/(t^2 - 5t - 3/4)dt`
add and subtract `(1/2 xx -5)^2 = 25/4`
I = `1/8int1/((t^2 - 5t + 25/4) - 3/4 - 25/4)dt`
= `1/8int1/((t - 5/2)^2 - 7)dt`
= `1/8int1/((t - 5/2)^2 - (sqrt7)^2)dt`
I = `1/8. 1/(2(sqrt7)). log(|(t - 5/2 - sqrt7)/(t - 5/2 + sqrt7)|) + c`
= `1/(16sqrt7) . log|((2t)/2 - 5/2 - (2sqrt7)/2)/((2t)/2 - 5/2 + (2sqrt7)/2)| + c`
= `1/(16sqrt7) . log|(2t - 5 - 2sqrt7)/(2t - 5 + 2sqrt7)| + c`
I = `1/(16sqrt7) . log|(2x^2 - 5 - 2sqrt7)/(2x^2 - 5 + 2sqrt7)| + c`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : tan2x dx
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`