Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
उत्तर
Let I = `int "x"^3/(16"x"^8 - 25)` dx
Put x4 = t
∴ 4x3 dx = dt
∴ x3 dx = `1/4` dt
∴ I = `1/4 int "dt"/(16"t"^2 - 25)`
`= 1/(4 xx 16) int "dt"/("t"^2 - 25/16)`
`= 1/64 int "dt"/("t"^2 - (5/4)^2)`
`= 1/64 xx 1/(2 xx 5/4) log |("t" - 5/4)/("t" + 5/4)|` + c
`= 1/160 log |("4t" - 5)/("4t" + 5)|` + c
∴ I = = `1/160 log |(4"x"^4 - 5)/(4"x"^4 + 5)|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int x/(x + 2) "d"x`
`int sec^6 x tan x "d"x` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`