Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
उत्तर
Let I = `int 1/("a"^2 - "b"^2 "x"^2)` dx
`= 1/"b"^2 int 1/("a"^2/"b"^2 - "x"^2)`dx
`= 1/"b"^2 int 1/(("a"/"b")^2 - "x"^2)` dx
`= 1/"b"^2 xx 1/(2("a"/"b")) log |("a"/"b" + "x")/("a"/"b" - "x")|` + c
∴ I = `1/"2ab" log |("a" + "bx")/("a" - "bx")|` + c
Alternate Method:
Let I = `int "dx"/("a"^2 - "b"^2"x"^2) = int"dx"/("a"^2 - ("bx")^2)`
`= 1/(2 xx "a") xx 1/"b" log |("a" + "bx")/("a" - "bx")|` + c
∴ I = `1/"2ab" log |("a" + "bx")/("a" - "bx")|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int(log(logx))/x "d"x`
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`