Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
उत्तर
Let I = `int "x"^3/sqrt(1 + "x"^4)` dx
Put 1 + x4 = t
∴ 4x3 . dx = dt
∴ x3 . dx = `1/4` dt
∴ I = `1/4 int "dt"/sqrt"t"`
`= 1/4 int "t"^((-1)/2)`dt
`= 1/4 * "t"^(1/2)/(1/2)` + c
`= 1/2 sqrt"t" + "c"`
∴ I = `1/2 sqrt(1 + "x"^4)` + c
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`sin x/(1+ cos x)`
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
`int cos^7 x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
Evaluate the following.
`int1/(x^2+4x-5) dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`