Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
उत्तर
Let I = `int (3x + 4)/(x^2 + 6x + 5).dx`
Let 3x + 4 = `"A"[d/dx(x^2 + 6x + 5)] + "B"`
= A(2x + 6) + B
∴ 3x + 4 = 2Ax + (6A + B)
Comparing the coefficient of x and constant on both sides, we get
2A = 3 and 6A + B = 4
∴ `"A" = (3)/(2) and 6(3/2) + "B"` = 4
∴ B = – 5
∴ 3x + 4 = `(3)/(2)(2x + 6) - 5`
∴ I = `int (3/2(2x + 6) - 5)/(x^2 + 6x + 5).dx`
= `(3)/(2) int (2x + 6)/(x^2 + 6x + 5).dx - 5 int (1)/(x^2 + 6x + 5).dx`
= `(3)/(2)"I"_1 - 5"I"_2`
I1 is of the type `int (f'(x))/f(x).dx = log|f(x)| + c`
∴ `"I"_1 = log|x^2 + 6x + 5| + c_1`
I2 = `int (1)/(x^2 + 6x + 5).dx`
= `int (1)/((x^2 + 6x + 9) - 4).dx`
= `int (1)/((x + 3)^2 - 2^2).dx`
= `(1)/(2 xx 2)log|(x + 3 - 2)/(x + 3 + 2)| + c_2`
= `(1)/(4)log|(x + 1)/(x + 5)| + c_2`
∴ I = `(3)/(2)log|x^2 + 6x+ 5| - (5)/(4)log|(x + 1)/(x + 5)| + c`, where c = c + c2.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :`intxlogxdx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate: `int 1/(x(x-1)) dx`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int cot^2x "d"x`
`int x/(x + 2) "d"x`
`int(log(logx))/x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int (cos x)/(1 - sin x) "dx" =` ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int (1+x+x^2/(2!))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).