Advertisements
Advertisements
प्रश्न
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
उत्तर
Let `I = int (x^3 sin (tan^-1 x^4))/(1 + x^8)` dx
Put tan-1 x4 = t
or `1/(1 + x^8) * 4x^3 dx = dt`
`1/(1 + x^8). x^3 = 1/4 dt`
Hence, `I = 1/4 int sin t dt`
`= - 1/4 cos t + C`
`= - 1/4 cos (tan^-1 x^4) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `int cos^2x.dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int sqrt(1 + "x"^2) "dx"` =
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int "x" * "e"^"2x"` dx
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int 1/(xsin^2(logx)) "d"x`
`int x/(x + 2) "d"x`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int1/(x(x - 1))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`