Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
उत्तर
Let I = `int (1)/(5 - 4x - 3x^2).dx`
5 – 4x –3x2 = `[5/3 - (x^2 + 4/3 x)]`
= `3[(5)/(3) - (x^2 + (4)/(3)x + (4)/(9)) + 4/9]`
= `3[(19)/(9) - (x^2 + (4x)/(3) + (4)/(9))]`
= `3[(sqrt(19)/3)^2 - (x + 2/3)^2]`
I = `int (1)/(3[(sqrt(19)/3)^2 - (x + 2/3)^2]).dx`
= `(1)/(3) (1)/(2(sqrt(19)/3))log |(sqrt(19)/(3) + (x + 2/3))/(sqrt(19)/(3) - (x + 2/3))| + c`
= `(1)/(2sqrt(19))log |(sqrt(19) + 2 + 3x)/(sqrt(19) - 2 - 3x)| + c`
= `(1)/(2sqrt(19))log |(3x + 2 + sqrt(19))/(-(3x + 2 - sqrt(19)))| + c`
= `(1)/(2sqrt(19))log |(3x + 2 + sqrt(19))/(3x + 2 - sqrt(19))| + c`. ...[∵ | – x |= x]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
`int 1/(cos x - sin x)` dx = _______________
`int x^2/sqrt(1 - x^6)` dx = ________________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int logx/x "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int(log(logx))/x "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int sec^6 x tan x "d"x` = ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Write `int cotx dx`.
`int (logx)^2/x dx` = ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
`int "cosec"^4x dx` = ______.
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`