Advertisements
Advertisements
प्रश्न
`int x^2/sqrt(1 - x^6)` dx = ________________
पर्याय
−sin−1 (x3) + c
cos−1 (x3) + c
sin−1 (x3) + c
`1/3 sin^(-1) (x^3) + "c"`
उत्तर
`1/3 sin^(-1) (x^3) + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int \log_e x\ dx\].
Write a value of
Write a value of
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
`int logx/(log ex)^2*dx` = ______.
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int (log x)/(log ex)^2` dx = _________
`int 1/(xsin^2(logx)) "d"x`
`int cot^2x "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int(5x + 2)/(3x - 4) dx` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int1/(4 + 3cos^2x)dx` = ______
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `intsinx/(sinx - cosx)dx` equals ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
`int x^2/sqrt(1 - x^6)dx` = ______.
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`