Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
उत्तर
Let I = `int (sinx + 2cosx)/(3sinx + 4cosx).dx`
Put,
Numberator = `"A (Denominator) + B"[d/dx("Denominator")]`
∴ sinx + 2cosx = `"A"(3sinx + 4cosx) + "B"[d/dx(3sinx + 4cosx)]`
= A(3 sin x + 4 cos x) + B(3 cos x – 4 sin x)
∴ sin x + 2 cos x = (3A – 4B)sin x + (4A + 3B)cos x
Equaliting the coefficients of sin x and cos x on both the sides, we get
3A – 4B = 1 ...(1)
and
4A + 3B = 2 ...(2)
Multiplying equation (1) by 3 and equation (2) by 4, we get
9A – 12B = 3
16A + 12B = 8
On adding, we get
25A = 11
∴ A = `(11)/(25)`
∴ from (2), `4(11/25) + 3"B"` = 2
∴ 3B = `2 - (44)/(25) = (6)/(25)`
∴ B = `(2)/(25)`
∴ `sinx + 2cos x = (11)/(25)(3sinx + 4cosx) + (2)/(25)(3cosx - 4sinx)`
∴ I = `int[(11/25(3sinx + 4cosx) + 2/25(3cosx - 4sinx))/(3sinx + 4cosx)].dx`
= `int[11/25 + (2/25(3cosx - 4sinx))/((3sinx + 4cosx))].dx`
= `(11)/(25) int1 dx + 2/25 int(3cosx - 4sin x)/(3sin x + 4cosx).dx`
= `(11)/(25)x + (2)/(25)log|3 sin x + 4 cos x| + c. ...[∵ int (f'(x))/(f'(x))dx = log|f(x)| + c]`
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 + cot x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
The value of \[\int\frac{1}{x + x \log x} dx\] is
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int sin^-1 x`dx = ?
`int sec^6 x tan x "d"x` = ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int cos^3x dx` = ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`