मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : sinx+2cosx3sinx+4cosx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`

बेरीज

उत्तर

Let I = `int (sinx + 2cosx)/(3sinx + 4cosx).dx`
Put,
Numberator = `"A (Denominator) + B"[d/dx("Denominator")]`

∴ sinx + 2cosx = `"A"(3sinx + 4cosx) + "B"[d/dx(3sinx + 4cosx)]`

= A(3 sin x + 4 cos x) + B(3 cos x – 4 sin x)
∴ sin x + 2 cos x = (3A –  4B)sin x + (4A + 3B)cos x
Equaliting the coefficients of sin x and cos x on both the sides, we get
3A – 4B = 1     ...(1)
and
4A + 3B = 2   ...(2)
Multiplying equation (1) by 3 and equation (2) by 4, we get
9A – 12B = 3
16A + 12B = 8
On adding, we get
25A = 11

∴ A = `(11)/(25)`

∴ from (2), `4(11/25) + 3"B"` = 2

∴ 3B = `2 - (44)/(25) = (6)/(25)`

∴ B = `(2)/(25)`

∴ `sinx + 2cos x = (11)/(25)(3sinx + 4cosx) + (2)/(25)(3cosx - 4sinx)`

∴ I = `int[(11/25(3sinx + 4cosx) + 2/25(3cosx - 4sinx))/(3sinx + 4cosx)].dx`

= `int[11/25 + (2/25(3cosx - 4sinx))/((3sinx + 4cosx))].dx`

= `(11)/(25) int1 dx + 2/25 int(3cosx - 4sin x)/(3sin x + 4cosx).dx`

= `(11)/(25)x + (2)/(25)log|3 sin x + 4 cos x| + c.     ...[∵ int (f'(x))/(f'(x))dx = log|f(x)|  +  c]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (A) | Q 2.05 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate :`intxlogxdx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

cot x log sin x


Integrate the functions:

`1/(1 + cot x)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int 1/(x(x-1)) dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{x - x^2} dx\]

Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int sin^-1 x`dx = ?


`int sec^6 x tan x   "d"x` = ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int cos^3x  dx` = ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


`int secx/(secx - tanx)dx` equals ______.


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate:

`int sin^3x cos^3x  dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×