Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
उत्तर
Let I = `int sqrt((x - 7)/(x - 9)).dx`
= `int sqrt((x - 7)/(x - 9) xx (x - 7)/(x - 7)).dx`
= `int sqrt((x - 7)^2/(x^2 - 16x + 63)).dx`
= `int (x - 7)/sqrt(x^2 - 16x + 63).dx`
Let x – 7 = `"A"[d/dx(x^2 - 16x + 63)] + "B"`
= A(2x – 16) + B
= 2Ax + (B – 16A)
Comparing the coefficient of x and constant term on both sides, we get
2A = 1
∴ A = `(1)/(2)` and
B – 16A = – 7
∴ `"B" - 16(1/2)` = – 7
∴ B = 1
∴ x – 7 = `(1)/(2)(2x - 16) + 1`
∴ I = `int (1/2(2x - 16) + 1)/sqrt(x^2 - 16x + 63).dx`
= `(1)/(2) int (2x - 16)/sqrt(x^2 - 16x + 63).dx + int (1)/sqrt(x^2 - 16x + 63).dx`
= `(1)/(2)"I"_1 + "I"_2`
In I1, put x2 – 16x + 63 = t
∴ (2x – 16)dx = dt
∴ I1 = `(1)/(2) int (1)/sqrt(t)dt`
= `(1)/(2) int t^(-1/2)dt`
= `(1)/(2) t^(1/2)/((1/2)) + c_1`
= `sqrt(x^2 - 16x + 63) + c_1`
I2 = `int (1)/sqrt(x^2 - 16x + 63).dx`
= `int (1)/sqrt((x - 8)^2 - 1^2).dx`
= `log|x - 8 + sqrt((x - 8)^2 - 1^2)| + c_2`
= `log|x - 8 + sqrt(x^2 - 16x + 63)| + c_2`
∴ I = `sqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`,, where c = c1 + c2.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`1/(1 + cot x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate: `int 1/(x(x-1)) dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
`int cos sqrtx` dx = _____________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int logx/x "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int x^3"e"^(x^2) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int dx/(1 + e^-x)` = ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int (logx)^2/x dx` = ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int "cosec"^4x dx` = ______.
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int 1/(x(x-1))dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`