मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following integrals : ∫x-7x-9.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`

बेरीज

उत्तर

Let I = `int sqrt((x - 7)/(x - 9)).dx`

= `int sqrt((x - 7)/(x - 9) xx (x - 7)/(x - 7)).dx`

= `int sqrt((x - 7)^2/(x^2 - 16x + 63)).dx`

= `int (x - 7)/sqrt(x^2 - 16x + 63).dx`

Let x – 7 = `"A"[d/dx(x^2 - 16x + 63)] + "B"`

= A(2x – 16) + B
= 2Ax + (B – 16A)
Comparing the coefficient of x and constant term on both sides, we get
2A = 1

∴ A = `(1)/(2)` and

B – 16A = – 7

∴ `"B" - 16(1/2)` = – 7
∴ B = 1
∴ x – 7 = `(1)/(2)(2x - 16) + 1`

∴ I = `int (1/2(2x - 16) + 1)/sqrt(x^2 - 16x + 63).dx`

 = `(1)/(2) int (2x - 16)/sqrt(x^2 - 16x + 63).dx + int (1)/sqrt(x^2 - 16x + 63).dx`

= `(1)/(2)"I"_1 + "I"_2`

In I1, put x2 – 16x + 63 = t

∴ (2x – 16)dx = dt

∴ I1 = `(1)/(2) int (1)/sqrt(t)dt`

= `(1)/(2) int t^(-1/2)dt`

= `(1)/(2) t^(1/2)/((1/2)) + c_1`

= `sqrt(x^2 - 16x + 63) + c_1`

I2 = `int (1)/sqrt(x^2 - 16x + 63).dx`

= `int (1)/sqrt((x - 8)^2 - 1^2).dx`

= `log|x - 8 + sqrt((x - 8)^2 - 1^2)| + c_2`

= `log|x  - 8 + sqrt(x^2 - 16x + 63)| + c_2`

∴ I = `sqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`,, where c = c1 + c2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.6 | पृष्ठ १२८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`1/(1 + cot x)`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate: `int 1/(x(x-1)) dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


`int cos sqrtx` dx = _____________


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int logx/x  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int x^3"e"^(x^2) "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int dx/(1 + e^-x)` = ______


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int (logx)^2/x dx` = ______.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


`int "cosec"^4x  dx` = ______.


Evaluate:

`int sin^2(x/2)dx`


Evaluate `int 1/(x(x-1))dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×