मराठी

∫ Cos 5 X Sin X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let  I } = \int\frac{\cos^5 \text{ x dx }}{\sin x}\]
\[ = \int\frac{\cos^4 x \cdot \cos \text{ x dx }}{\sin x}\]
\[ = \int\frac{\left( \cos^2 x \right)^2 \cdot \cos \text{ x dx }}{\sin x}\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^2 \cos  \text{ x dx }}{\sin x}\]
\[ = \int\left( \frac{1 + \sin^4 x - 2 \sin^2 x}{\sin x} \right) \cos \text{ x dx }\]
\[ \text{ Putting  sin x = t}\]
\[ \Rightarrow \cos \text{ x dx }= dt\]
\[ \therefore I = \int\left( \frac{1 + t^4 - 2 t^2}{t} \right)dt\]
\[ = \int\frac{dt}{t} + \int t^3 dt - 2\int\ t\ dt\]
\[ = \text{ ln  }\left| t \right| + \frac{t^4}{4} - \frac{2 t^2}{2} + C\]
\[ = \text{ ln }\left| t \right| + \frac{t^4}{4} - t^2 + C\]
\[ = \text{ ln }\left| \sin x \right| + \frac{1}{4} \sin^4 x - \sin^2 x + C .....................\left[ \because t = \sin x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 77 | पृष्ठ २०४

संबंधित प्रश्‍न

Evaluate :`intxlogxdx`


Integrate the functions:

`1/(1 + cot x)`


Evaluate: `int 1/(x(x-1)) dx`


Evaluate: `int (sec x)/(1 + cosec x) dx`


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

\[\int x \sin^3 x\ dx\]

Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int x^x (1 + logx)  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int (1 + x)/(x + "e"^(-x))  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


Evaluate `int(1 + x + x^2/(2!) )dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int1/(x(x - 1))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


`int x^3 e^(x^2) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×