Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int\frac{\cos^5 \text{ x dx }}{\sin x}\]
\[ = \int\frac{\cos^4 x \cdot \cos \text{ x dx }}{\sin x}\]
\[ = \int\frac{\left( \cos^2 x \right)^2 \cdot \cos \text{ x dx }}{\sin x}\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^2 \cos \text{ x dx }}{\sin x}\]
\[ = \int\left( \frac{1 + \sin^4 x - 2 \sin^2 x}{\sin x} \right) \cos \text{ x dx }\]
\[ \text{ Putting sin x = t}\]
\[ \Rightarrow \cos \text{ x dx }= dt\]
\[ \therefore I = \int\left( \frac{1 + t^4 - 2 t^2}{t} \right)dt\]
\[ = \int\frac{dt}{t} + \int t^3 dt - 2\int\ t\ dt\]
\[ = \text{ ln }\left| t \right| + \frac{t^4}{4} - \frac{2 t^2}{2} + C\]
\[ = \text{ ln }\left| t \right| + \frac{t^4}{4} - t^2 + C\]
\[ = \text{ ln }\left| \sin x \right| + \frac{1}{4} \sin^4 x - \sin^2 x + C .....................\left[ \because t = \sin x \right]\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Integrate the functions:
`1/(1 + cot x)`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate: `int 1/(sqrt("x") + "x")` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int x^x (1 + logx) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int (1 + x)/(x + "e"^(-x)) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Evaluate `int(1 + x + x^2/(2!) )dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate `int1/(x(x - 1))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
`int x^3 e^(x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`