मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫1cos2x+3sin2x.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`

बेरीज

उत्तर

Let I = `int (1)/(cos2x + 3sin^2x).dx`

= `int (1)/(1 - 2sin^2x + 3sin^2x).dx`

= `int(1)/(1 + sin^2x).dx`

Dividing both numerator and denominator by cos2x, we get

I = `int(sec^2x dx)/(sec^2x + tan^2x)`

= `int (sec^2x dx)/(1 + tan^2x + tan^2x)`

= `int (sec^2x dx)/(2tan^2x + 1)`

Put tan x = t
∴ sec2x dx = dt

∴ I = `int (1)/(2t^2 + 1)dt`

= `(1)/(2) int (1)/(t^2 + (1/sqrt(2))^2)dt`

= `(1)/(2) xx (1)/((1/sqrt(2)))tan^-1 (t/(1/sqrt(2))) + c`

= `(1)/sqrt(2)tan^-1 (sqrt(2)tan x) + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.19 | पृष्ठ १२३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int sqrt(1 + sin2x)  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int(5x + 2)/(3x - 4) dx` = ______


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int ("d"x)/(x(x^4 + 1))` = ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int sqrt(x^2 - a^2)/x dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×